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Preface

Generally speaking, image processing applications for computer vision consist of
enhancement, reconstruction, segmentation, recognition and communications. In the last
few years, image segmentation played an important role in image analysis.

The field of digital image segmentation is continually evolving. Most recently, the advanced
segmentation methods such as Template Matching, Spatial and Temporal ARMA Processes,
Mean Shift Iterative Algorithm, Constrained Compound Markov Random Field (CCMRF)
model and Statistical Pattern Recognition (SPR) methods form the core of a modernization
effort that resulted in the current text. In the medical world, it is interested to detect and
extract vertebra locations from X-ray images. The generalized Hough Transform to detect
vertebra positions and orientations is proposed. The spatial autoregressive moving average
(ARMA) processes have been extensively used in several applications in image and signal
processing. In particular, these models have been used for image segmentation. The Mean
shift (MSH) method is a robust technique which has been applied in many computer vision
tasks. The MSH procedure moves to a kernel-weighted average of the observations within a
smoothing window. This computation is repeated until convergence is obtained at a local
density mode. The density modes can be located without explicitly estimating. The
Constrained Markov Random Field (MRF) model has the unifying property of modeling
scene as well as texture images. The scheme is specifically meant to preserve weak edges
besides the well defined strong edges. By Statistical Pattern Recognition approach, the
cognitive and statistical classifiers were implemented in order to verify the estimated and
chosen regions on unstructured environments images.

Following our previous popular artificial intelligent book “Image Segmentation”, ISBN
978-953-307-228-9, published on April 19, 2011, this new edition of “Advanced Image
Segmentation” is but a reflection of the significant progress that has been made in the field
of image segmentation in just the past few years. The book presented chapters that highlight
frontier works in image information processing. I am pleased to have leaders in the field to
prepare and contribute their most current research and development work. Although no
attempt is made to cover every topic, these entire five special chapters shall give readers a
deep insight. All topics listed are equal important and significant.

Pei-Gee Peter Ho
DSP Algorithm and Software Design Group,

Naval Undersea Warfare Center
Newport, Rhode Island, USA





Chapter 1

Template Matching Approaches Applied to Vertebra
Detection

Mohammed Benjelloun, Saïd Mahmoudi and
Mohamed Amine Larhmam

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/50476

1. Introduction

In the medical world, the problems of back and spine are usually inseparable. They can take
various forms ranging from the low back pain to scoliosis and osteoporosis. Medical Imag‐
ing provides very useful information about the patient's condition, and the adopted treat‐
ment depends on the symptoms described and the interpretation of this information. This
information is generally analyzed visually and subjectively by a human expert. In this diffi‐
cult task, medical images processing presents an effective aid able to help medical staff. This
is nowhere clearer than in diagnostics and therapy in the medical world.

We are particularly interested to detect and extract vertebra locations from X-ray images.
Some works related to this field can be found in the literature. Actually, these contributions
are mainly interested in only 2 medical imagery modalities: Computed Tomography (CT)
and Magnetic Resonance (MR). A few works are dedicated to the conventional X-Ray radi‐
ography. However, this modality is the cheapest and fastest one to obtain spine images. In
addition, from the point of view of the patient, this procedure has the advantage to be more
safe and non-invasive. For these reasons, this review is widely used and remains essential
treatments and/or urgent diagnosis. Despite these valuable benefits, the interpretation of im‐
ages of this type remains a difficult task now. Their nature is the main cause. Indeed, in
practice, these images are characterized by a low contrast and it is not uncommon that some
parts of the image are partially hidden by other organs of the human body. As a result, the
vertebra edge is not always obvious to see or detect.

In the context of cervical spinal column analysis, the vertebra edges detection task is very
useful for further processing, like angular measures (between two consecutive vertebrae or

© 2012 Benjelloun et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



in the same vertebra in several images), vertebral mobility analysis and motion estimation.
However, automatically detecting vertebral bodies in X-Ray images is a very complex task,
especially because of the noise and the low contrast resulting in that kind of medical image‐
ry modality. The goal of this work is to provide some computer vision tools that enable to
measure vertebra movement and to determine the mobility of each vertebra compared to
others in the same image.

The main idea of the proposed work in this chapter is to locate vertebra positions in radio‐
graphs. This operation is an essential preliminary pre-processing step used to achieve full
automatic vertebra segmentation. The goal of the segmentation process is to exploit only the
useful information for image interpretation. The reader is lead to discover [1] for an over‐
view of the current segmentation methods applied to medical imagery. The vertebra seg‐
mentation has already been treated in various ways. The level set method is a numerical
technique used for the evolution of curves and surfaces in a discrete domain [2]. The advant‐
age is that the edge has not to be parameterized and the topology changes are automatically
taken into account. Some works related to the vertebrae are presented in [3]. The active con‐
tour algorithm deforms and moves a contour submitted to internal and external energies [4].
A special case, the Discrete Dynamic Contour Model [5] has been applied to the vertebra
segmentation in [6]. A survey on deformable models is done in [7]. Other methods exist and
without being exhaustive, let’s just mention the parametric methods [15], or the use boun‐
dary based segmentation [16] and also Watershed based segmentation approaches [17].

The difficulties resulting from the use of X-ray images force the segmentation methods to be
as robust as possible. In this chapter, we propose, in the first part, some methods that we
have already used for extracting vertebrae and the results obtained. The second part will fo‐
cus on a new method, using the Hough transform to detect vertebrae locations. Indeed, the
proposed method is based on the application of the Generalized Hough Transform in order
to detect vertebra positions and orientations. For this task, we propose first, to use a detec‐
tion method based on the Generalized Hough Transform and in addition, we propose a cost
function in order to eliminate the false positives shapes detected. This function is based on
vertebra positions and orientations on the image.

This chapter is organized as follow: In section 02 we present some of our previous works
composed of two category of method. The firsts are based on a preliminary region selection
process followed by a second segmentation step. We have proposed three segmentation ap‐
proach based on corner detection, polar signature and vertebral faces detection. The second
category of methods proposed in this chapter is based on the active shape model theory. In
section 03 we describe a new automatic vertebrae detection approach based on the General‐
ized Hough transform. In section 04 we conclude this chapter.

2. Previous work

In this part, we provide an overview of the segmentation approach methods that we have
already applied to vertebrae detection and segmentation. We proposed two kinds of seg‐
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mentation approaches. The first one were based a regions selection process allowing the de‐
tection of vertebra orientations and inter-vertebral angles and the second based of the active
shape model theory. These methods present semi-automatic computer based techniques.

2.1. Region selection

In this section, we propose a first pre-processing step which allows the creation of a polygo‐
nal region for each vertebra. This pre-treatment is achieved by a template matching ap‐
proach based on a mathematical representation of the inter-vertebral area. Indeed, each
region represents a specific geometrical model based on the geometry and the orientation of
the vertebra. We suggest a supervised process where the user has to click once at the center
of each vertebra to be analyzed. These clicks represent the starting points P(xi, yi) for the
construction of vertebra regions [11]. After this, we compute the distance between every two
contiguous points (Di ,i+1) and the line L1, which connects these contiguous points, by a first
order polynomial, equation (1).

L 1 = f a, b; P(xi, yi), P(xi+1, yi+1) (1)

The function L1 will be used as reference for a template displacement, Figure 1, by the func‐
tion T(x,y) defined in equation (2). This template function represents an inter-vertebral mod‐
el, which is calculated according to the shapes of the areas between vertebrae.

T (x, y)= (1 - e -r xi
2)withr = k

Di ,i+1
(2)

With k = 0.1 an empirical value and xi the coordinate of the point (x, y) in the new reference
plane in each vertebra center. We use the L1 function and the inter-vertebral distances, to
compute the inter-vertebral angles (αiv) and to determine a division line for each inter-ver‐
tebral area. The goal of this proposed template matching process is to find the positions on
the image which are best correlated with the template function. So, for each vertebra, the
template function T (x, y) is first placed on the geometrical inter-vertebral central point
P(xic, yic), which represents the average position between each two contiguous click points:
P(xi, yi) andP(xi+1, yi+1). The new reference plane -on each vertebra- is created with the
point P(xic, yic) as center. The X axis of this plane is the line L1. The Y axis is therefore easily
created by tracing the line passing through P(xic, yic)and orthogonal to L1. We notice that
the orientation angle of this second axis present the initial value of the orientation angle αiv.

To determine the points representing border areas, we displace the template function
T (x, y) equation (2), between every two reference points P(xi, yi)and P(xi+1, yi+1), along the
line L1. For more details on this approach, the reader can consult this [8]. The results ob‐
tained by the process of vertebral regions selection are shown in Fig 2.

Template Matching Approaches Applied to Vertebra Detection
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Figure 1. The template function T displacement.

Figure 2. Results obtained by the process of vertebral regions selection. (a) Original image reference with the click
points, (b) inter-vertebral points given by the template matching process, (c) boundary lines between vertebrae, (d)
vertebrae regions.
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2.1.1. Harris corner detector

After the creation of a polygonal area for each vertebra, we can apply locally a few ap‐
proaches to segmentation as shown in the following examples.

Figure 3. The different steps of the detection process using the region selection method combined to the Harris
corner detector.

Figure 4. Results obtained by using the region selection method combined to the Harris corner detector.

Figure 3 and figure 4 show the results obtained by using the region selection method combined
to the Harris corner detector [8] applied to X-ray image of the cervical spinal column. We no‐
tice that the process of region selection, Figure 3, gives very good results and permit to isolate
each vertebra separately in a polygonal area. On the other hand, the extraction of the anterior
face of the vertebra using the interest point detection process is given with high precision.

Template Matching Approaches Applied to Vertebra Detection
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2.1.2. Polar signature

A second segmentation approach that we proposed to apply after the region selection proc‐
ess is based on a polar signature [8] representation associated to the polygonal region for
each vertebra described on section 2.1. We choose to use this approach in order to explore all
region points likely to be corresponding to vertebra contours.

For each vertebra we use as center of the polar coordinate system the click point initially
used for the region selection step. For the beginning direction, we chose the average direc‐
tion between the frontal line direction and the posterior line. We rotate the radial vector 360°
around the central points with a step parameter expressed in degrees. In order to determine
vertebra contours, we select the maximum value of the image gradient, Figure 5, for each
degree inside the research zone.

Figure 5. Polar signature applied to vertebra region.

Figure 6. Polynomial fitting applied after a polar signature.

In order to get a closed contour, we apply an edge closing method to the contours obtained,
a polynomial fitting to each face for each vertebra. Indeed, for a better approximation of ver‐
tebra contours, we use a second degree polynomial fitting [9, 10]. We achieve this 2D poly‐
nomial fitting by the least square method, Figure 6.

2.1.3. Vertebral Faces Detection

In this method, we proceed by detecting the four faces belonging to vertebrae contours. We
propose an individual characterization of each vertebra by a set of four faces, (anterior, pos‐
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terior, inferior and superior faces). We start with a process of region selection. The resulting
regions obtained are used to create a global polygonal area for each vertebra. Another stage
considered as a second pre-treatment step is the computation of the image gradient magni‐
tude on vertebrae regions. This process allows a first approximation of the areas belonging
to vertebrae contours, figure 7. To extract faces vertebrae contours, we propose a template
matching process based on a mathematical representation of vertebrae by a template func‐
tion. This function is defined according to the radial intensity distribution on each vertebra.
For more details see [12].

Figure 7. The template matching process for faces detection. (a) translation and, (b) rotation operation applied to the
template function.

2.2. Active shape model based segmentation:

In this section, we describe another method that we proposed for cervical vertebra segmen‐
tation in digitized X-ray images. This segmentation approach is based on Active Shape Mod‐
el method [12, 13,14] whose main advantage is that it uses a statistical model. This model is
created by training it with sample images on which the boundaries of the object of interest
are annotated by an expert. The specialist knowledge is very useful in this context. This
model represents the local statistics around each landmark. Our application allows the ma‐
nipulation of a vertebra model. We proposed an approach which consists on modelling all
the shapes of vertebrae by only one vertebra model. The results obtained are very promis‐
ing. Indeed, the multiple tests which we carried out on a large dataset composed of varied
images prove the effectiveness of the suggested approach. The ASM method is composed of
4 steps (figure8):

1. Learning: placing landmarks on the images in order to describe the vertebrae.

2. Model Design: aligning all the marked shapes for the creation of the model.

Template Matching Approaches Applied to Vertebra Detection
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3. Initialization: the mean shape model is associated with the corners of the searched ver‐
tebrae. This step can be manual or semi-automatic.

4. Segmentation: each point of the mean shape evolves so that its contour fits the edge of
the vertebrae.

Figure 8. The steps of our framework using ASM.

3. Shape detection using Generalized Hough Transform

In this section, we propose a cervical vertebrae detection method using a modified template
matching approach based on the Generalized Hough Transform [18]. The Hough Transform is
an interesting technique used in image analysis to extract imperfect instances of a shape in im‐
ages by a voting procedure. The success of this method relies mainly on the quality of the pat‐
tern used. The detection process that we propose starts with the determination of the edges on
the radiography. We achieve this task by using the well-known Canny detector, [19]. After this
step, the detection algorithm selects among the edges which one look the most similar to the
vertebra shape by using the Generalized Hough Transform (GHT) accumulator.

For our experiments, we used 40 X-Ray radiographs coming from the NHANES II database.
These images were chosen randomly but they all are focused on the cervical vertebrae C3 to
C7. The first pre-processing step consists on a preliminary contour detection step. For this
task we used the canny filter detector. After applying the detection process using the GHT
method and the cost function proposed, all the vertebrae were detected perfectly. The seg‐
mentation results show that vertebra positions and edges are well detected by applying the
proposed segmentation approach using the Generalized Hough Transform and followed by
applying the proposed cost function.

3.1. Generalized Hough Transform

3.1.1. R-Table construction

The Generalized Hough transform (GHT) is a powerful pattern recognition technique wide‐
ly used in computer vision. It was initially developed to detect analytic curves (lines, circles,
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parabolas, etc.) from binary image and extended by D. H. Ballard [18] to extract arbitrary
shapes based on a template matching approach. This method is well known by its invari‐
ance to scale change, rotation and translation. The detection process of the GHT is presented
as two main parts:

The R-Table is a discrete lookup table made to represent the model shape. The construction
of this table is computed during a training phase based on the edge information as follow.

Given an arbitrary shape of a target object, figure 11, the first step is to determine a reference
pointc→ =(cx, cy) in the object. The shape is defined in according to the distance and angle
from the boundary to the reference point. For each point of the boundary we compute the
orientation φ and the relative position r→ =(rx, ry) from the reference point. Then, we store the
distance r and the direction from the boundary point to the reference point β in the R-Table
as a function of the orientationφ. We have in general many occurrences of the same orienta‐
tion as we move around the boundary. The form of the R-table is shown in Table 1.

Orientation φ Positions (r,β )

0 {(ri, βi) /φi = 0}

Δφ {(ri, βi) /φi =Δφ}

2Δφ {(ri, βi) /φi = 2Δφ}

… …

Table 1. The general R-table form.

3.1.2. The accumulator construction

The accumulator is a three dimensional voting scheme constructed in the following manner.
For each edge point p→  in the image, we compute the gradient directionφp. Then, we vote for
all possible positions p→ − r→ i of the reference point in the accumalator array, where r→ i are the
positions (ri, βi) undexed under φi =φpin the R-Table. The shape is indicated by finding local
maxima in the voting scheme.

3.2. Application to vertebrae segmentation

The proposed approach is based on three main steps:

1. Modeling

2. Detection

3. Post-processing

Template Matching Approaches Applied to Vertebra Detection
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Figure 9. The steps of the proposed framework.

3.2.1. Modeling

The modeling process is an offline task. It is composed of three steps:

i. Geometric model construction: In this step, we build a vertebra mean model repre‐
senting the average shape corresponding to a set of 25 vertebrae. The contour used
to create this mean shape was extracted manually. the resulting model is shown in
Figure 2(a)

ii. Gradient computation and edge detection: We use the canny operator to extract the edge
of the vertebrae mean model. Canny operator was proposed in 1986 [19]. It is widely
used in image processing and provides an accurate result for edge detection.

Within this operator, the image is first smoothed to reduce the noise. This step is realized by
convolving the image with the kernel of Gaussian filter defined by equation (3):

G(x, y)= 1

2πσ 2
e −(x 2+y 2)/2σ 2

(3)

The gradient of each pixel in the smoothed image is computed by applying the Sobel-opera‐
tor. The approximation is performed in horizontal and vertical directions by applying the
two masks shown in equation (4).

Gx =
- 1 0 1
-2 0 2
-1 0 1

Gy =
-1 -2 -1
0 0 0
1 2 1

(4)

Then, the direction of the edges is determined by the equation (5).

φ =arctan( Gx

Gy
) (5)

The next step is non-maximum suppression. Only the local maxima in the gradient image
are preserved. Finally, an edge tracking by hysteresis is used, where high and low threshold
are defined to make a filter for pixels of the last image.

The canny edge detection result is shown in Figure 2(b).

Advances in Image Segmentation12



iii. R-Table construction: This offline phase of the GHT consists of calculating the tem‐
plate shape of the vertebra, constructed using information about position and di‐
rection of edge points computed in the last step.

Assuming that n denotes the number of model edge point pi(xi, yi)(i =1…n) and φi its corre‐

sponding gradient. the refrence pointc→ =(cx, cy)is calculated by the equation (6):

c⇀ = 1
n∑ p⇀ i (6)

The R-table is then constructed by analysing all the boundry points of the model shape. For
each point pi, we compute the distance ri and βithe angle between the horizontal direction

and the reference point c as shown ine equation (7) and (8).

ri = (xc - xi)2 + (yc - yi)2 (7)

βi =artan( yi − yc

xi − xc
) (8)

Figure 10. The modelling process results (a) Vertebra mean model, (b) Edge detection result, (c) the template shape
constructed from the R-Table.

Therefore, the R-table allows to recompute the center point position, using edge points and
the gradient information, equation (9).

cx = x + rcos(β), cy = y + rsin(β) (9)

The different parameters of the modified Hough transform are presented in Figure11.

Template Matching Approaches Applied to Vertebra Detection
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Figure 11. The GHT parameters corresponding to a model edge point.

The R-table construction algorithm can be expressed as follow (Listing 1):

1. Create the R-table.

2. For each edge point pi, do:

a. Compute the gradient direction φ

b. Calculate ri

c. Calculate βi

3. Increment ri and βi as a function of φ

4. End

Listing 1. Pre-processing steps used to create the R-table

Figure 10(c) shows the vertebra construction using only information stored in the R-Table.

3.2.2. Potential vertebrae centers detection

For the vertebrae detection we propose two alternative approaches, Automatic and semi-au‐
tomatic detection. We make a preliminary pre-processing step based on histogram equaliza‐
tion to enhance X-ray images. Next, we use the Canny and Sobel operators for edge
detection and gradient computation. Then, we perform GHT process based on the R-table
calculated at offline training.

a. Pre-processing

Advances in Image Segmentation14



• Contrast-Limited Adaptive Histogram Equalization:This step aims to prepare the X-ray
images to edge detection by using the Contrast-Limited Adaptive Histogram Equali‐
zation (CLAHE) [3] technique used to improve the image contrast. It computes first
different local histograms corresponding to each part of the image, and uses them to
change the contrast of distinct regions of the image. This method is well known by
limiting noise amplification. The result of this step is shown in Figure 13(b).

• Gradient computation and edge detection:In this step, we repeat the same process descri‐
bed in the model construction. Therefore, edge detection with Canny filter is applied
to the improved image, and sobel operator is performed in –x and –y directions. The
result of the edge detection is showen in figure 13(c).

b. Region of interest selection

We made two alternative approaches of our selection of Region of Interest (ROI). The differ‐
ent versions of ROI selection are presented in Figure 12.

Figure 12. The two proposed processing of ROI selection.

Template Matching Approaches Applied to Vertebra Detection
http://dx.doi.org/10.5772/50476

15



Figure 13. The proposed edge detection approach in case of cervical vertebrae (a)the original X-ray image, (b) the
improved image, (c) The Canny edge detection result.

• Automatic: This algorithm travel through the image without any human action. Noises are
observed in the final results.

• Semi-automatic: Two points are placed to make a sub-image covering the area of cervical
vertebrae. The figure 14 shows the result selection

Figure 14. Semi-automatic ROI selection.

c. Accumulator construction:This step represents the core of the Generalized Hough Trans‐
form detection. It aims to determine the position of the center points of vertebrae in the
input X-ray image by using the information stored in the R-table.

Advances in Image Segmentation16



In practice, each point from the edge detection results, figure 13(c), votes for different possi‐
ble centers. The selection is based on the gradient direction of the target point and its corre‐
sponding information in the R-table. These votes are stored in an accumulator.

The proposed model may be not easily matched. For this reason, we add a new parameter to
make a range of scale to enhance the detection process. Therefore, a voted point can be ex‐
pressed by its two coordinates x and y:

a
b =

xi

yi
+ s * rφ

j
coscos(βφj)
sinsin(βφj)

(10)

Wheresis the scale, (rφ
j, βφ

j) the parameters obtained in (5) and (6) corresponding to φ value
in the R-table. Listing 2 summarize the detection algorithm.

1. Find all edge detection points

2. For each feature point (xi, yi)

a. Compute the gradient direction φ

b. For each (rφ
j, βφ

j) indexed under φ in the R-table

• For each scale s, compute the candidate center (a, b)

• Increment (a, b) in the accumulator.

3. Potential centers are given by local maxima in the accumulator

Listing 2. Detection algorithm of the Generalized Hough transform method.

3.2.3. Post-processing analysis:

For the post processing analysis we propose a new powerful issue in order to consider in a
more global way the results given by the GHT voting procedure. This process is composed
of four steps:

a. Image grid cost: We divide the image area into small squares which sizes are depending
of the image resolution. We attribute to each of these areas a value determined by a cost
function at first depending only of the number of votes. Each square vote for a unique
point computed as a mean of all inside points

This method gives some good results on quality radiographies but quickly reach its lim‐
itations by detecting mainly false positive. That is why, in addition to this first detection
process, we introduce a new cost function, in order to eliminate the false positives.

b. Top voted: Based on the top three voted centers from the last step, we keep only the
points that are in a specific distance computed in an offline process based on experi‐
mentations,area of the first and third quadrant in figure 15. Then, we repeat the same
process for the selected point. This technique respects the inclination of the neck.

Template Matching Approaches Applied to Vertebra Detection
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c. Linear regression fitting:Among the set of possible vertebrae extracted, the good ones are
those forming a line, globally orthogonal to the orientation of the considered vertebra.
We apply a simple linear regression based on a processing selection of top voted point
from the accumulator.

The objective of this step is to select the effectively voted points(x, y) based on the straight
line equation (11).

{y =ax + b

a =
Sxy

Sxx

b = ȳ −ax̄

(11)

Where Sxy =∑ (xi − x̄)(yi − ȳ)

Figure 15. Region of selection around the top voted point in color.

d. Adaptive distance filter: An adaptive filter is finally applied to the result of the linear regres‐
sion fitting step. This task aims to check the distance between selected points. Based on
these distance, we compute the average distance between vertebrae centers. This enables
us to eliminate false centers (with a distance higher or smaller than the average distance).

3.3. Experiments and results

Experimentations have been conducted using a set of 40 digitized X-ray films. These images
presenting cervical spine region (Figure 13(a)) are obtained from the National Health and
Nutrition Examination Surveys database NHANES II.

These experimentations are focused on the detection of the cervical vertebrae C3 to C7 (Fig‐
ure 16). Indeed, our input images contain a total of 200 (40x5) vertebrae. We notice that the
mean model was build using a set of 25 cervical vertebrae (Figure10(a)).
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Figure 16. Cervical vertebra C1 to C7.

Figure17 and Figure 18 shows the obtained results by using thetwo proposed approaches in
case of four X-ray images. These results enabled a global accuracy of 64,5% with automatic de‐
tection and 89% with the semi-automatic detection on the 200 vertebrae investigated as shown
in Table 2. Notice that the C7 vertebra is detected with a rate of 32,5% and 60% with the two
techniques which is lower than the mean accuracy. This is due to the edge detection step which
does not detect efficiently this vertebra. The noise surrounding this cervical area makes this de‐
tection more difficult. We note 35,5% of false detection in the automatic technique.

Vertebrae

type

Detection rate

Automatic Semi-automatic

True False True False

C3 70,0% 35,5% 97,5% 0%

C4 77,5% 95,0%

C5 65,0% 95,0%

C6 77,5% 97,5%

C7 32,5% 60,0%

Global 64,5% 89,0%

Table 2. Accuracy recognition.
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We note also that the edge detection and gradient computation steps depend on the contrast
level of the input images. The use of CLAHE method allowed to achieve an efficient gradi‐
ent computation, and hence enhanced the edge extraction.

Figure 17. Final result detection of C3 to C7 cervical vertebrae with the automaticapproach (a) Five detection and one
false positive, (b)Three detections and four false positives.

Figure 18. Final result detection of C3 to C7 cervical vertebrae with the semi-automatic approach for two cases.
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4. Conclusion

In this chapter we have proposed a set of medical images detection and segmentation meth‐
ods applied to vertebrae identification. We have first introduced a pre-processing operation
that consists on defining a global polygonal region for each vertebra. This pre-treatment was
used as a first step of three semi-automatic segmentation methods allowing to locate verte‐
brae positions and contours. These methods are based on automatic corner detection, polar
signature and face detection. We have also proposed another semi-automatic segmentation
approach based on the widely used active shape model theory.

On the other hand we have proposed using the Generalized Hough Transform –GHT– to
perform semi-automatic and automatic vertebrae detection methods. The GHT technique is
a powerful method for object recognition. It has a lot of advantages, like robustness under
partial or slightly deformed shapes, tolerance to noise, and the ability to find multiple occur‐
rences of a shape during the same processing task. In the GHT method, the model shape is
represented by an R-table, which presents a discrete lookup table based on its edge informa‐
tion. The references points corresponding to the shapes to be detected are deduced from an
accumulator containing an array of votes related to each point on the initial boundary
shape. The points corresponding to highest number of votes represent the references point
candidate and indicate the position of the model in the image. In addition to this first detec‐
tion process, we introduced a new cost function that consisted on a grid based voting proce‐
dure. We applied also a post-processing analysis based on a linear regression fitting and an
adaptive distance filter. As result, the proposed methods give promising detection rate for a
large set of X-ray images. For our future works we plan to make an optimization of the GHT
transform to increase the vertebrae detection accuracy and also computing time.
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Chapter 2

Image Segmentation and Time Series Clustering Based
on Spatial and Temporal ARMA Processes

Ronny Vallejos and Silvia Ojeda

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/50513

1. Introduction

During the past decades, image segmentation and edge detection have been two important
and challenging topics. The main idea is to produce a partition of an image such that each
category or region is homogeneous with respect to some measures. The processed image can
be useful for posterior image processing treatments.

Spatial autoregressive moving average (ARMA) processes have been extensively used in
several applications in image/signal processing. In particular, these models have been used
for image segmentation, edge detection and image filtering. Image restoration algorithms
based on robust estimation of a two-dimensional process have been developed (Kashyap &
Eom 1988). Also the two-dimensional autoregressive model has been used to perform unsu‐
pervised texture segmentation (Cariou & Chehdi, 2008). Generalizations of the previous al‐
gorithms using the generalized M estimators to deal with the effect caused by additive
contamination was also addressed (Allende et al., 2001). Later on, robust autocovariance
(RA) estimators for two dimensional autoregresive (AR-2D) processes were introduced (Oje‐
da, 2002). Several theoretical contributions have been suggested in the literature, including
the asymptotic properties of a nearly unstable sequence of stationary spatial autoregressive
processes (Baran et al., 2004). Other contributions and applications of spatial ARMA proc‐
esses have been considered in many publications (Basu & Reinsel, 1993, Bustos 2009a, Fran‐
cos & Friendlaner1998, Guyon 1982, Ho 2011, Illig & Truong-Van 2006, Martin1996, Vallejos
& Mardesic 2004).

A new approach to perform image segmentation based on the estimation of AR-2D process‐
es has been recently suggested (Ojeda 2010). First an image is locally modeled using a spatial
autoregressive model  for  the image intensity.  Then the residual  autoregressive image is
computed. This resulting image possesses interesting texture features. The borders and edges

© 2012 Vallejos and Ojeda; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
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are highlighted, suggesting that the algorithm can be used for border detection. Experimen‐
tal results with real images clarify how the algorithm works in practice. A robust version of
the algorithm was also proposed, to be used when the original image is contaminated with
additive outliers. Applications in the context of image inpainting were also offered.

Another concern that has been pointed out in the context of spatial statistics is the develop‐
ment of coefficients to compare two spatial processes. Coefficients that take into account the
spatial association between two processes have been proposed in the literature. (Tjostheim,
1978) suggested a nonparametric coefficient to assess the spatial association between two
spatial variables. Later on, (Clifford et al. 1989) proposed an hypothesis testing procedure to
study the spatial dependence between two spatial sequences. Rukhin & Vallejos (2008) stud‐
ied asymptotic properties of the codispersion coefficient first introduced by Matheron(1965).
The performance and impact of this coefficient to quantify the spatial association between
two images is currently under study Ojeda et al. (2012). An adaptation of this coefficient to
time series analysis was studied in Vallejos (2008).

In the context of clustering time series Chouakria & Nagabhushan (2007) proposed a dis‐
tance measure that is a function of the codispersion coefficient. This measure includes the
correlation behavior and the proximity of two time series. They proposed to combine these
distances in a multiplicative way, introducing a tuning constant controlling the weight of
each quantity in the final product. This makes the measure flexible to model sequences with
different behaviors, comparing them in terms of both correlation and dissimilarity between
the values of the series.

The structure of this chapter consist in two parts. In the first part we review some theoretical
aspects of the spatial ARMA processes. Then the algorithm suggested by Ojeda(2010), its
limitations and advantages are briefly described. In order to propose a more efficient algo‐
rithm new variants of this algorithm are suggested specially to address the problem of de‐
termining the most convenient (in terms of the quality of the segmentation) prediction
window of unilateral AR-2D processes. The computation of the distance between the filtered
images and the original one will be done by using the codispersion coefficient and other im‐
age quality measures (Wang and Bovik 2002). Examples with real images will highlight the
features of the modified algorithm. In the second part, the codispersion coefficient previous‐
ly used to measure the closeness between images is utilized in a distance measure to per‐
form cluster analysis of time series. The distance measure introduced in Chouakria &
Nagabhushan (2007) is generalized in the sense that considers an arbitrary lag h that allows
us to capture a higher serial correlation of two temporal or spatial sequences. Examples and
numerical studies are presented to explore our proposal in several different scenarios. We
explore the performance of hierarchical methods to classify correlated sequences when the
proposed proximity measure is used, employing the Monte Carlo simulation. An applica‐
tion is discussed for time series measuring the Normalized Difference Vegetation Index
(NDVI) in four locations of Argentina. The clusters formed using hierarchical classification
techniques with the proposed distance measure preserve the geographical location where
the series were obtained, providing information that is unavailable when using hierarchical
methods with conventional distance measures.
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2. Image Segmentation Through Estimation of Spatial ARMA Processes

2.1. The Spatial ARMA Processes

Spatial ARMA processes have been studied in the context of random fields indexed overℤd ,
d ≥2, where ℤd is endowed with the usual partial order. That is, fors =(s1, s2, …, sd ),

u =(u1, u2, …, ud )inℤd ,s ≤u if fori =1, 2, .…, d ,si ≤ui For a, b∈ℤd , such that a≤band a≠b,  we

define S a, b ={x∈ℤd |a≤ x ≤b}and S a, b =S a, b \{a}.

A random field (Xs)s∈ℤd  is said to be a spatial ARMA(p, q)with parameters p, q∈ℤd if it is

weakly stationary and satisfies the equation

Xs −∑ j∈S 0, p
ϕj Xs− j =εt +∑

k∈S 0,q
θjεs− j, (1)

where (ϕj) j∈S 0, p
and(εj)k∈S 0,q

, respectively, denote the autoregressive and moving aver‐

age parameters with ϕ0 =θ0 =1,  and (εs)s∈ℤd denotes a sequence of independent and identi‐

cally distributed centered random variables with varianceσ 2. Notice that if p =0, the sum
over S 0, p  is supposed to be zero, and the process is called a spatial moving average MA
(q) random field. Similarly, ifq =0, the process is called a spatial autoregressive AR(p)ran‐
dom field. The ARMA random field is labeled as causal if it has the following unilateral rep‐
resentation.
Xs = ∑

j∈S 0,∞

ψjεs− j

with∑
j

| ϕj | <∞. Similar to the time series case, there are conditions on the (AR or MA)

polynomials that ensure stationarity and invertibility, respectively. Let
Φ(z)=1−∑

j∈S 0, p
ϕjz

jand Θ(z)=1−∑
j∈S 0,q

θjz
j, where z =(z1, z2, …, zd )and

z j = z1
j1z2

j2 … zd
jd . A sufficient condition for the random field to be causal is that the AR poly‐

nomial Φ(z) has no zeros in the closure of the open discD d inℂd . For example, if d =2,  the
process is causal if Φ(z1, z2)is not zero for any z1and z2that simultaneously satisfy | z1 | <1
and | z2 | <1 (Jain et al., 1999).

Applications of spatial ARMA processes have been developed, including analysis of yield
trials in the context of incomplete block designs (Cullis & Glesson 1991, Grondona et al.
1996) and the study of spatial unilateral first-order ARMA model (Basu & Reinsel, 1993).
Other theoretical extensions of time series and spatial ARMA models can be found in (Baran
et al., 2004, Bustos et al., 2009b, Gaetan & Guyon 2010, Choi 2000, Genton & Koul 2008, Guo
1998, Vallejos and Garccía-Donato 2006).
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2.2. An Image Segmentation Algorithm

In this section, we describe an image segmentation algorithm that is based on a previous fit‐
ting of spatial autoregressive models to an image. This fitted image is constructed by divid‐
ing the original image into squared sub-images (e.g.,8×8) and then fitting a spatial
autoregressive model to each sub-image (i.e., block). Then, we generate a sub-image from
each local fitted model, preserving intensities on the boundary to smooth the edges between
blocks. The final fitted image is yielded by putting together all generated sub-images.

LetZ =Zm,n,0≤m≤M −1 ,0≤n ≤N −1 , be the original image, and letX=Xm,n,
0≤m≤M −1, 0≤n ≤N −1,  where for all0≤m≤M −1,0≤n ≤N −1 ,Xm,n =Zm,n − Z̄ ,  and Z̄ is the
mean ofZ. Let 4≤k ≤min(M , N )and consider the rearrange images
Z=Zm,n,  
X=Xm,n,

where0≤m≤M ′−1,0≤n ≤N ′−1 , M ′ = M − 1
k − 1 (k −1) + 1,N ′ = N − 1

k − 1 (k −1) + 1. For all

ib =1, ⋯ , M − 1
k − 1 and for all jb =1, ⋯ , N − 1

k − 1 the (k −1)× (k −1)block (ib, jb)of the image X is de‐
fined as
BX (ib, jb)= Xr ,s,

where (k −1)(ib−1) + 1≤ r ≤ (k −1)iband(k −1)( jb−1) + 1≤ s ≤ (k −1) jb. Then, the approximated im‐
age X̂ of X is provided by Algorithm 1.

Algorithm 1.

For each block BX (ib, jb)

1. Compute estimatorsϕ̂1(ib, jb), ϕ̂2(ib, jb)of ϕ1 and ϕ2corresponding to the block BX (ib, jb)ex‐
tended to:
BX

′ (ib, jb)= Xr ,s,

where(k −1)(ib−1)≤ r ≤ (k −1)ib,(k −1)( jb−1)≤ s ≤ (k −1) jb.

2. Let X̂  be defined on the block BX (ib, jb)by
X̂ r ,s = ϕ̂1(ib, jb)Xr−1,s + ϕ̂2(ib, jb)Xr ,s−1

where (k −1)(ib−1) + 1≤ r ≤ (k −1)iband (k −1)( jb−1) + 1≤ s ≤ (k −1) jb.

Then the approximated image Ẑof the original image Z is:
Ẑ m,n = X̂ m,n + Z̄ , 0≤m≤M ′−1, 0≤n ≤N ′−1.

The image segmentation algorithm we describe below is supported by a widely known no‐
tion in regression analysis. If a fitted image very well represents the patterns on the original
image, then the residual image (i.e., the fitted image minus the observed image) will not
contain useful information about the original patterns because the model already explains
the features that are present in the original image. On the contrary, if the model does not
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well represent the patterns that are present in the original image, then the residual image
will contain useful information that has not been explained by the model. Thus, to imple‐
ment an algorithm based on these notions, we must characterize which patterns are present
in the residual image when the fitted image is not a good representation of the original one,
and we must develop a technique to produce a fitting that is satisfactory in terms of segmen‐
tation but not a very good estimation in that the residual image still contains valuable infor‐
mation. (Ojeda et al. 2010) investigated these concerns and, based on several numerical
experiments with images, determined that the residual image associated with a good local
fitting is in fact poor in terms of structure (i.e., it is very similar to a white noise). However,
when the fitted image is poor in terms of estimation, the residual image is useful for high‐
lighting the boundaries and edges of the original image. Moreover, a bad fitting is related to
the size of the block (or window) used in Algorithm 1. The best performance is attained for
the maximum block size, which would be the size of the original image. The image segmen‐
tation algorithm introduced by (Ojeda et al. 2010) can be summarized as follows.

Algorithm 2.

1. Use Algorithm 1 to generate an approximated image Ẑof Z .

2. Compute the residual autoregressive image given by Z − Ẑ

Example 1. We present examples with real images to illustrate the performance of Algo‐
rithms 1 and 2. These images were taken from the database http://sipi.usc.edu/database. Fig‐
ure 1(a) shows an original image of size512×512 (aerial), and Figure 1(b) shows the image
generated by Algorithm 1 when a moving window of size 512×512is used to define an
AR-2D process on the plane. It is not possible to visualize the differences between the origi‐
nal and fitted images. However, the residual image (Fig 1(c)) shows patterns that the model
is not able to capture. Basically, the AR-2D model does not capture the changes in the tex‐
ture produced by lines, borders and object boundaries. These features are contained in the
residual image produced by Algorithm 2 such that the good performance of Algorithm 2 is
associated with a moderate fitting of the AR-2D model. Another image (peepers) was proc‐
essed by Algorithm 2 to show the effect of the size of the moving window. Figure 2(b)
shows the segmentation produced by Algorithm 2 using a moving window of size 128×128.
Another segmentation with a moving of size 512×512is shown in Figure 2. In both cases, the
segmentations highlight the borders and boundaries present in the original image.

2.3. Improving the Segmentation Algorithm

In all experiments carried out in (Ojeda et al., 2010) and (Quintana et al., 2011), Algorithm 1
was implemented using the same prediction window for the AR-2D process, which contains
only two elements belonging to a strongly causal region on the plane. Here, we consider other
prediction windows to observe the effect on the performance of Algorithm 2. A description
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Figure 1. Images generated by Algorithms 1 and 2.

Figure 2. (b)-(c) Images generated by Algorithm 2 with prediction windows of 128 × 128and 512 × 512respectively.

of the most commonly used prediction windows in statistical image processing is in Bustos
et al., (2009a). A brief description of the strongly causal prediction windows is given below.

For all (m, n)∈ℤ2,  a strongly causal region at (m, n) is defined as

S (m, n)= {(k , l)∈ℤ2 :k ≤m, l ≤n)}− {(m, n)} (2)

For a given M ∈ℕ,  a strongly causal prediction window is

W ={(k , l)∈ s(m, n) :m−M ≤k ≤m, n −M ≤ l ≤n}. (3)

In particular, ifM =1, then a strongly causal prediction window containing three elements is

W1 = {(k , l)∈ s(m, n) :m−1≤k ≤m, n −1≤ l ≤n} (4)

The set W1 is shown in Figure 3 (b). Similarly, strongly causal prediction windows can be

defined by considering not only the top left quadrant on the plane ℤ2.The definition of such
sets generates the prediction windows W2, W3, andW4, as shown in Figure3(b). Algorithms
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1 and 2 were implemented using the prediction windows W1, W2, W3,  and W4, with two
elements each (Figure 3(a)).

Figure 3. Strongly causal prediction windows.

Visually, the best segmentation for the aerial image is yielded by the prediction window W2.
The lines and edges are better highlighted in this segmentation (Figure 4(b)) than in the oth‐
er segmentations. The dark regions are also stressed, which provides a more intense and
brighter partition of the original features.

To gain insight on image quality measures, the fitted images produced by Algorithm 1 asso‐
ciated with the images shown in Figure 4(a) -(d) were compared aerially with the original
image using three coefficients described in (Ojeda et al., 2012). These coefficients are briefly
described below.

Consider two weakly stationary processes, (Xs)s∈D and (Ys)s∈D, D⊂ℤd .For a given h ∈D,
the codispersion coefficient is defined as

ρ(h )=
γ(h )

VX (h )VY (h )
, (5)

where s, s + h ∈D, γ(h )=E X (s + h )−X (s) Y (s + h )−Y (s) , VX (h )=E X (s + h )−X (s) 2(and
similarly forVY (h )).

For d =2, the sample codispersion coefficient is defined by

ρ̂(h )=
∑s ,s+h ∈D ' asbs

V̂ X (h )V̂ Y (h )
(6)

withs =(s1, s2), h =(h 1, h 2), D ′⊆D, # (D ′)<∞, as =X(s1 + h 1, s2 + h 2) −X (s1, s2),
bs =Y(s1 + h 1, s2 + h 2) −Y (s1, s2),  V̂ X (h )=∑s ,s+h ∈D ′ as

2,  and V̂ Y (h )=∑s ,s+h ∈D ′ bs
2.
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Figure 4. a)-(d) Images generated by Algorithm 2 with prediction windows W 1−W 4respectively.

The index Q (Wang and Bovik, 2002) is

Q =
4SXY X̄ Ȳ

(SX
2 + SY

2) X̄ 2 + Ȳ 2 =
SXY

SX SY
·

2X̄ Ȳ
X̄ 2 + Ȳ 2 ·

2SX SY

SX
2 + SY

2 =C · M · V , (7)

where X̄  is the mean of(Xs)s∈D, SX is the standard deviation of (Xs)s∈D,  and SXY  is the co‐
variance between (Xs)s∈Dand (Ys)s∈D(and similarly for Ȳ andSY ). The quantity
C =SXY / SX SY models the linear correlation between (Xs)s∈D and(Ys)s∈D,

M =2X̄ Ȳ / (X̄ 2 + Ȳ 2)measures the similarity between the sample means (luminance) of
(Xs)s∈Dand(Ys)s∈D, and V =2SX SY / (SX

2 + SY
2)measures the similarity related to the contrast

between the images. Coefficient Q is defined as a function of the correlation coefficient;
hence, it is able to capture only the linear association between (Xs)s∈Dand(Ys)s∈D It is un‐
able to account for other types of relationships between these sequences, including the spa‐
tial association in a specific direction h . Ojeda et al. (2012) suggested by the CQindex, which
is defined as:
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CQ(h )= ρ̂(h ) · M · V , (8)

where M and V are defined as in (7).

The correlation coefficient and the coefficients defined in (6), (7) and (8) were computed to
compare the fitted images, which were generated with a prediction window with two ele‐
ments and associated with the images shown in Figure 4(a) -(f), and the original images. The
results are shown in Table 1. In all cases, the highest values of the image quality measures
are attained for the image fitted using the prediction window W2.This means that the resid‐
ual image shown in Figure 4 (b) is the best segmentation yielded by Algorithm 2. The same

Table 1. Image quality measures between the fitted and original (aerial) images related to the residual images shown
in Figure 4.

experiment was carried out for the image shown in Figure 2(a). Table 2 summarizes the values
of the image quality coefficients for the fitted images generated by Algorithm 2 with predic‐
tion windows W1, W2, W3, and W4. In this case, the best performance is for the fitted image

Table 2. Image quality measures between the fitted and original (peppers) images.

generated with prediction window W4.In general, the performance of Algorithm 2 depends
on the choice of the prediction window. One way to choose the prediction window that yields
the best segmentation is to maximize the association between the fitted and original im‐
ages. Indeed, if we denote the original image by Zand the fitted image generated by Algo‐
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rithm 1 with the prediction window Wi  by Ẑ W i
, then the prediction window that produces

the best segmentation can be obtained by finding the maximum value of one of the quality
measures (6), (7) or (8) between ZandẐ W i

.  This criterion is summarized in the following
algorithm.

Algorithm 3.

1. Use Algorithm 1 to generate the approximated images Ẑ W i
of Z ,  i =1, 2, 3, 4.

2. Compute an image quality index between Zand Ẑ W i
for all i =1, 2, 3, 4.Suppose that the

maximum value for the image quality index is attained for Ẑ W j
,  1≤ j ≤4.Then, the best fitted

image is Ẑ W j
.

3. Compute the residual autoregressive image Z − Ẑ W j
.

3. Clustering Time series

3.1. Measuring Closeness and Association Between Time Series

Let x =(x1, x2, …, xp)and y =(y1, y2, …, yq) be two time series. There are several convention‐
al distance measures between time series. For example, ifp =q =n, then the Euclidean dis‐

tance between xand yis defined as dE (x, y)= (∑
i=1

n
(xi − yi)2)1/2

.As is evident, dE ignores

information about the dependence between xand y. The Minkowski distance is a generaliza‐
tion of the Euclidean distance, which is defined as

dM (x, y)= (∑
i=1

n
(xi − yi)q)1/q

, (9)

where qis a positive integer. The Fréchet distance was introduced to measure the proxim‐
ity between continuous curves. Let m  be a natural number such that m≤min(p, q). Let M
be the set of all mappings rbetween xand ysuch that ris a sequence of mpairs preserving
the order
r =((xa1

, yb1
), (xa2

, yb2
), …, (xam

, ybm
)),

where ai∈ {1, 2, ..., p},bj∈ {1, 2, ...q} with a1 =1, b1 =1, am = p, bm =q and fori∈ {1, 2, …, m−1},
ai+1 = (ai or ai + 1)and bi+1 = (bi or bi + 1).Note that | r | =maxi=1,2,…,m | xai

− ybi
|  is the mapping

length representing the maximum span between two coupled observations. Thus, the Fré‐
chet distance between the series xandyis given by

dF (x, y)=min
r∈M

| r | =min
r∈M

(max
i=1,2,…,m

| xai
− ybi |). (10)
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Dynamic time warping (DTW) is a variant of the Fréchet distance that considers mapping
length as the sum of the spans of all coupled observations. That is,

| r | = ∑
i=1,2,…,m

| xai
− ybi | .

Dynamic time warping is then defined as

dDTW (x, y)=min
r∈M

| r | =min
r∈M

∑
i=1,2,…,m

| xai
− ybi | . (11)

The distances defined above are based on the proximity of the values | xai
− ybi

| . However,
these distances disregard both the temporal dependence between the sequences xand y and
the correlation structure of each sequence.

Several distance measures that are functions of the correlation between two sequences
(Cor(x, y)) have been suggested. For example, (Golay et al.,1998) proposed

dcc(x, y)= ( 1−Cor(x, y)
1 + Cor(x, y) )βanddcc

2(x, y)=2(1−Cor(x, y)),

where βis a parameter related to the fuzzy c-means classification algorithm (Macqueen,
1967). However, none of these measures takes into account the serial association between
the sequences because the correlation coefficient is a crude measure of association. This ap‐
proach requires the study of coefficients that are capable of capturing the spatial or serial
correlation between two sequences.

3.2. The Codispersion Coefficient for Time Series

Consider two weakly stationary processes, X ={Xs : s∈D⊂ℤ}and Y ={Ys : s∈D⊂ℤ}, and let
xand ybe realizations of these processes as in Section 3.1. For d =1, the estimator (6) becomes

ρ̂(h )=
∑t∈N (h ) (xt+h − xt)(yt+h − yt)

∑
t∈N (h )

(xt+h − xt)2 ∑
t∈N (h )

(yt+h − yt)2 (12)

where N (h )= {t : t + h ∈D},  N = | N (h )| is the cardinality of N (h ), and sequences xand y
are realizations of processes xandy, respectively. The coefficient ρ̂(h ) is called the comove‐
ment coefficient when h =1. Although ρ̂(h )is not the correlation coefficient, the codispersion
coefficient shares a number of its standard properties. For example, ρ̂(h )is translation invari‐
ant, positive homogeneous, symmetric in its arguments, positive definite for a sequence and
lagged versions of itself, and interpretable as the cosine of the angle between the vectors
formed by the first difference of the sampled series. As in the case of classic correlation, a
codispersion coefficient of +1indicates that the compared functions or processes are rescaled
or retranslated versions of one another. Similarly, a profile matched with its reflection across
the time axis yields a codispersion of−1. The value ρ̂(h )=0expresses that there is no monoto‐
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nicity between xand yand that their growth rates are stochastically linearly independent.
More details can be found in (Rukhin & Vallejos, 2008 , Vallejos, 2008).

3.3. Dissimilarity Index for Time Series

This coefficient involves a distance measure and a correlation-type measure that addresses
both the correlation behavior and the proximity of two time series. The dissimilarity index
depends on similarity behaviors, which should be specified in advance. The suggested dis‐
similarity index D(x, y, h )for the realizations xand yand d =1is given by

D(x, y, h )= f (ρ̂(h )) · d (x, y), (13)

where f  is an adaptive tuning function, and d (x, y)is one of the conventional distances de‐
scribed in Section 3.1 that summarizes the closeness of sequences xandy. There are many
possible ways to choose a function f . Here, we follow the guidelines given in (Chouakria &
Nagabhushan, 2007), according to which f is considered an exponential adaptive tuning
function given by

f k (t)=
2

1 + exp(kt) , (14)

where k ≥0modulates the contributions of the proximity with respect to values and behav‐
ior. For example, when | ρ̂(1)| is large and k =2, the proximity with respect to behavior con‐
tributes 76.2% toD. The flexibility of Dallows us to choose ksuch that for highly dependent
sequences, the correlation structure can have a large weight in (13).

Note that (13) is a generalization of the dissimilarity index introduced in Chouakria & Na‐
gabhushan, (2007). The dissimilarity index (13) can capture high-order serial correlations be‐
tween the sequences because the distance lag h is arbitrary, while Chouakria's index only
captures the first-order correlation.

The dependence of (13) on h is crucial, and in some specific cases, h can be chosen using an
optimal criterion. For example, for two AR(1) processes with parameters ϕ1andϕ2,  respec‐
tively, and a correlation structure between the errors (Rukhin & Vallejos,2008 ), it is possible
to find ϕ1, ϕ2such that Var(ρ̂(1))Var(ρ̂(2)).In other words, for those processes in which the
asymptotic variance of the codispersion coefficient is known, we suggest setting the value of
ĥ to produce the minimum variance. That is,

ĥ =argmin
h

Var(ρ̂(h )) . (15)

When the variance of the codispersion coefficient is difficult to compute, resampling meth‐
ods can be use to estimate the variance of the sample codispersion coefficient (Politis & Ro‐
mano, 1994, Vallejos, 2008).
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In the next section, we present two simulation examples to illustrate the capabilities of the

hierarchical methods using the distance measure (13) under the tuning function given by

(14). All else being constant, the clusters produced using traditional distances are usually

different from those yielded using the distance measure (13).

3.4. Simulations

In this example, we simulate observations from six first-order autoregressive models to il‐

lustrate the clustering produced by hierarchical methods when the sequences exhibit serial

correlation. To generate the series, we consider the following models.

Xt
i =ϕi Xt−1

i + εt
i, i =1, 2, ...6,

where ∀ i =1, 2, ..., 6, X i ={Xt
i}t∈ℤdefine the i −model, and the sequence ε i ={εt

i}t∈ℤis zero-

mean white noise. Note that the sequences ε 1and ε 2have the covariance structure

Cov(εt
1, εs

2)= {ρστ,  s = t ,
0, otherwise,

with σ 2 =τ 2 =1, andρ =0.9. The same covariance structure is assumed for εt
1and εt

3, with

σ 2 =τ 2 =1and ρ =0.7. ε i, i =4, 5, 6, are assumed to be white noise processes with variance 1

and are uncorrelated with all other error sequences. Ifi, j ≤3, the correlation structure be‐

tween processes X iandX j, i ≠ j, is not null due to the correlation structure between ε iand

ε j. Instead, ifi, j ≥4, i ≠ j, the correlation structure between processes X iand X jvanishes.

Two  hundred  observations  were  generated  from  each  model  for  ϕ1 = −0.5,  ϕ2 = −0.3,

ϕ3 = −0.7,  ϕ4 =0.1,  ϕ5 = −0.9, and  ϕ6 = −0.2.The  goal  was  to  perform  time  series  cluster‐

ing  with  the  Euclidean  distance  and  (13).  Hierarchical  methods  with  complete  linkage

using  both  measures  were  implemented  to  evaluate  whether  the  methods  are  capable

of  capturing the  correlation structure  between the  sequences  described above.  We used

the  distance  measure  (13)  under  the  tuning function (14)  for  h =1, andk =3.  That  is,  the

correlation structure contributes  90.5% to D, whereas the proximity with respect  to  val‐

ues  contributes  9.5%.

Image Segmentation and Time Series Clustering Based on Spatial and Temporal ARMA Processes
http://dx.doi.org/10.5772/50513

37



Figure 5. a) Time series clustering using the Euclidean distance, (b) Time series clustering usingD.

In Figure 5, we see that the dendrogram obtained using hierarchical methods with the Eucli‐

dean distance does not recognize the correlation structure between X 1and X 3.In this case,

sequences X 1, X 2, X 4, and X 5are pulled together before sequence X 3.However, hierarchi‐

cal methods using (13) yield the expected results, combining sequences X 1, X 2, and X 3be‐
fore the rest of the series.

To obtain better insight into the classification process using the proposed distance measure
(13), we carried out a second simulation study that involves clustering measures based on
other distances (but using the same setup). Observations from models 1-6 were generated
using Gaussian white noise sequences for the errors, thereby preserving the same correla‐
tion structure used in the first study. The goal was to explore the ability of the distance measure
(13) to group strongly correlated series first. A total of 1000 runs were considered for this

Table 3. Percentage of correct clustering of the correlated series 1,2 and 3.

experiment, and 200 observations were generated in each run. We used measure (13) under
the tuning function (14) for h =1, 2and k =1, 2, 3, 4.We counted the number of times that the
hierarchical algorithm with complete linkage was able to pull together series 1, 2 and 3 be‐
fore connecting them with other sequences. The traditional distances described in Section 2
were also implemented. After the 1000 simulation runs were finished, the percentage of
times that the algorithm was able to recognize the correlated series was recorded. The re‐
sults of the experiment are summarized in Table 3 and 4.
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Table 4. Percentage of correct clustering of the correlated series (1,2, and 3).  DDTW (h , k )is distance measure (13)

with  the DTW distance.  DM (h , k )and DF (h , k )denote distance measure  (10)  with  Minkowski  and Frechet  distan‐

ces respectively.

Note from Table 3 that the traditional distance measures failed to group the correlated sequen‐
ces, with the exception of the Minkowski distance, which correctly grouped the correlated
series 99% of the time. The hierarchical algorithm that uses the distance measure (13) has a
higher percentage of well-clustered correlated sequences than the same algorithm using the
traditional distance measures described in Section 2 (see Table 4). The percentage of correct
clusters increased in all cases with the distance measure (13), suggesting that hierarchical
algorithms can be improved by including coefficients of association that consider high-or‐
der cross-correlation.

3.5. The NDVI Data Set

In this section, we consider time series from four different locations in Argentina. The data
set consists of 15 monthly NDVI series measured during a period of 19 years (i.e., January
1982-December 2000). The observed values correspond to a transformation to the interval
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0, 255 of the original NDVI series, which commonly resides in the interval −1, 1 .The data
were collected by a NOAA sensor at 1 km resolution and provided by the Comisión Nacio‐
nal de Actividades Espaciales (CONAE) in Córdoba, Argentina.  Fifteen time series were
collected from the following: the Amazon region in the northeast of Argentina (1, 2, 3), the
Patagonia region in the south of Argentina (4, 5, 6, 7), the Pampean region in the center of
Argentina (8, 9, 10, 11) and the Pre-Andean zone of Argentina (12, 13, 14, 15). The time series
are shown in Figure 6.

Figure 6. Fifteen NDVI series collected from four different regions in South America.

We can observe a variety of different patterns in Figure 6. In particular, the data collect‐
ed during the period 1994-1995 show irregular  behavior.  Additionally,  the original  data
lack some information (less than one percent) for all series over the period 1999-2000. An
imputation technique based on moving averages,  which takes into account past  and fu‐
ture values of the series, was used to replace missing values. The series were grouped by
geographical region and then plotted (Figure 7). Similar patterns are observed for the ser‐
ies across each group.

An exploratory data analysis was carried out for each of the 15 series. There exists signifi‐
cant autocorrelation of order of at least one in all series. Seasonal components are present in
most of partial autocorrelations. Because there is no large departure from the weakly station‐
ary assumptions (i.e., constant means and variances), all series can be modeled using the Box-
Jenkins approach. Specifically, seasonal ARIMA models can be fitted to each single series with
a small number of parameters (i.e., p ≤5,  q ≤5andd ≤2).
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Figure 7. The fifteen NDVI series grouped by area.

3.6. Clustering

Using the NVDI data set described in Section 3.5, the distance measure Din (13) was comput‐
ed for all possible pairs. Then, dendrogram plots were constructed using a hierarchical pro‐
cedure (i.e., complete linkage) to compare the mergers and clusters produced using Dwith
those produced using the conventional distances described in Section 2.2 and (13). In Figure
8, we observe the agglomeration produced by using the Euclidean distance (top left); the other
five plots show the results produced by distance (13) for different values of kand h .The
agglomeration algorithm using the Euclidean distance merges series 5 together with series
12-15 and thus does not preserve location when grouping series. However, with k =1and h =1
in (13), the location dependence of the 15 series is captured. Higher values of kand h  do not
modify the original clusters formed usingD. In Figure 9, we see the clusters and merges yielded
by using the Minkowski distance in (13). Note that series 4 is classified together with series 8,
9, 10 and 11 in the top left plot, but with k =1and h =1,  the algorithm handles the series
differently (shown in the top right plot) by merging together those series that are in the same
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location. The effects of higher values of kand h .are again negligible. The Fréchet distance
produced unsatisfactory results. In this case, the hierarchical algorithm does not take into
account the geographical location when using both the conventional distances measures and
(13). For example, series 1, 2 and 3 were merged in different stages. Nevertheless, when kand
h are increased, the algorithm using (13) still clusters the series by geographical location. Indeed,
if our goal is to produce four clusters as before, the hierarchical algorithm with h =2and k =3
produces a geographically consistent agglomeration (dendrograms not shown here). The same
analysis was performed using the hierarchical algorithm with the dynamic time warping
distance measure. In this case, this distance measure produced an agglomeration by geograph‐
ical location and thus did not need to be modified to capture serial correlation. The result
yielded with (13) produced the same outcome for all values of kand h .

Figure 8. Clusters produced by using a hierarchical method with the Minkowski distance and (13).
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Figure 9. Clusters produced by using a hierarchical method with the Fréchet distance and (13)

4. Concluding Remarks and Future Work

This chapter described two problems. The first problem involved image segmentation, while
the second problem involved clustering time series. For the first problem, a new algorithm
was proposed that enhances the segmentation yielded by a previous algorithm (Ojeda et al.,
2010). Identifying the best prediction window improves segmentation based on the estima‐
tion of AR-2D processes and generalizes the previous algorithm to different prediction win‐
dows associated with unilateral processes on the plane. An analysis of the association
between the original and fitted images relies on the selection of a suitable image quality
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measure. Using three image quality coefficients that are commonly used in image segmenta‐
tion, we carried out experiments that support our algorithm. Specifically, a set of images be‐
longing to the image database (http://sipi.usc.edu/database/) were processed and provided
satisfactory results (not shown here) in terms of image segmentation.

This chapter also proposed an extension of the dissimilarity measure first introduced in
(Chouakria & Nagabhushan,2007). The simulation experiments performed and the data
analysis carried out for relevant ecological series show that the distance lag h plays an im‐
portant role in capturing the higher-order correlation of each series. Cluster analysis per‐
formed using the proposed distance measure produced different merges and dendrograms.
Furthermore, the percentage of times that the hierarchical algorithms correctly classified the
highly correlated sequences increased in all cases in which the distance measure (13) was
used. For the NDVI series discussed in Section 3.5, the distance measure Dimproved the
performance of the Euclidean, Fréchet and Minkowski distances in the presence of high-or‐
der autocorrelation in the series. The dynamic time warping distance measure showed the
best performance in capturing the serial correlation between the NDVI series, and thus, it
was not necessary to introduce modified distance measures such as (13) to ensure agglomer‐
ation by geographical location.

Now, further research for the topics presented in this chapter is outlined.

Following the notation used in the Algorithm 3, consider the following residual image.
RW i

=Z − Ẑ W i
.

One interesting open problem involves the characterization of the types of images and dis‐
tributions associated with the segmentation produced by Algorithms 2 and 3. In addition,
the definition and study of linear combinations of residual images produced by distinct pre‐
diction windows is also of interests. For example,

I =∑
j=1

4
ajRW i

,

where ajis a weight associated with the residual image RW i
.

Regarding the clustering technique problem, the distribution of Dcan be studied from a
parametric point of view. This is an open problem that we expect to address in future research.
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Chapter 3

Image Segmentation Through an Iterative Algorithm
of the Mean Shift

Roberto Rodríguez Morales, Didier Domínguez,
Esley Torres and Juan H. Sossa

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/50474

1. Introduction

Image  analysis  is  a  scientific  discipline  providing  theoretical  foundations  and  methods
for  solving  problems  appearing  in  a  range  of  areas  as  diverse  as  biology,  medicine,
physics, astronomy, geography, chemistry, meteorology, robotics and industrial manufac‐
turing, among others.

Inside any image analysis system, an aspect of vital importance for pattern recognition and
image interpretation that has to be taken into account is segmentation and contour extrac‐
tion. Both problems can be really difficult to face due to the variability in the form of the
objects and the variation in the image quality. An example can be found in the case of bio-
medical images which are frequently affected by noise and sampling, that can cause consid‐
erable difficulties when rigid segmentation methods are applied [Chin-Hsing et al., 1998;
Kenong & Levine, 1995; Koss et al., 1999; Rodríguez et al., 2002].

Many segmentation techniques are available in the literature and some of them have been
widely used in different application problems. Most of these segmentation techniques were
motivated by specific application purposes. Many different approaches for image segmenta‐
tion there are; which mainly differ in the criterion used to measure the similarity of two regions
and in the strategy applied to guide the segmentation process. The definition of suitable simi‐
larity and homogeneity measures is a fundamental task in many important applications, rang‐
ing from remote sensing to similarity-based retrieval in large image databases.

Segmentation is an important part of any computer vision and image analysis system,
wherein regions of interest are identified and extracted for future processing. Of the quality

© 2012 Rodríguez Morales et al.; licensee InTech. This is an open access article distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



of segmentation depends, on great measure, the good performance of higher level analysis
steps such as recognition and interpretation.

However, in spite of the most complex algorithms developed until now, segmentation con‐
tinues to be very application dependent. A single method that can solve the multitude of
present problems there is not. It still remains a complex problem with no exact solution that
by means of traditional low-level techniques, such as: thresholding, region growing and oth‐
er classical operations requires a considerable amount of interactive guidance in order to at‐
tain satisfactory results. Automating these model-free approaches is difficult because of
complexity, shadows, and variability within and across individual objects.

For years, the most suitable algorithms have been the iterative methods. These cover a varie‐
ty of techniques, ranging from the mathematical morphology based methods, the deforma‐
ble models up to thresholding based methods. However, one of the problems of these
iterative techniques is the stopping criterion, for which many strategies have been proposed
[Vincent & Soille, 1991; Cheriet et. al., 1998; Chenyang et. al., 2000].

Mean shift (MSH) is a robust technique which has been applied in many computer vision
tasks, as by example: image segmentation, visual tracking, etc. [Shen & Brooks, 2007]. MSH
technique was proposed by Fukunaga and Hostetler [Fukunaga et. al., 1975] and largely for‐
gotten until Cheng´s paper [Cheng, 1995] rekindled interest in it. MSH is a versatile non‐
parametric density analysis tool and it can provide reliable solutions in many applications
[Comaniciu, 2002]. In essence, MSH is an iterative mode detection algorithm in the density
distribution space. The MSH procedure moves to a kernel-weighted average of the observa‐
tions within a smoothing window. This computation is repeated until convergence is ob‐
tained at a local density mode. This way the density modes can be located without explicitly
estimating the density. An elegant relation between the MSH and other techniques can be
found in [Shen & Brooks, 2007].

The iterative algorithm that is used in this chapter is based on the mean shift and in several
works was previously introduced and applied [Rodríguez & Suarez, 2006; Rodríguez, 2008;
Domínguez & Rodríguez, 2009; Domínguez & Rodríguez, 2011; Rodríguez et. al., 2011a; Ro‐
dríguez et. al., 2011b; Rodríguez et. al., 2012]. In those papers, entropy was used as a stop‐
ping criterion. Entropy is not a new concept in the information theory field and it has been
used in image restoration, edge detection and as an objective evaluation method for image
segmentation [Zhang, 2003].

In this chapter is presented a research, using standard images and real images, based on a seg‐
mentation algorithm which used an iterative computation of the mean shift filtering. A com‐
parison of the obtained results was carried out, according to the number of iterations and the
degree of homogenization of the segmented images. Also, a comparison of the obtained results
with our algorithm with other segmentation methods already established was carried out.

The aim of this chapter is to present the advances that the authors have obtained in the field
of the image segmentation. Also, some strategies that constitute suitable tools are presented,
which it can be used in many system of image analysis where methods of segmentation are
required. The main contribution of this chapter is to analyze how the quality of the segment‐
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ed images varies for different values of the window sizes (hr and hs) and the stopping crite‐
rion. Many of the obtained results were compared with other methods.

This chapter continues as follows: In Section 2 the most significant theoretical aspects on
mean shift are detailed. In Section 3, we shortly introduce the entropy concept and we also
give some comments on this. The iterative algorithm of the mean shift is described in Sec‐
tion 4. In Section 5 the used standard images are presented. Moreover, some of the charac‐
teristics of the real images are described. In Section 6 the experimental results are exposed,
and also an analysis and discussion of these are carried out. Finally, in Section 7 the most
important conclusions of this chapter are given.

2. Theoretical aspects

The iterative procedure to compute the mean shift is introduced as normalized density esti‐
mate of the gradient. By employing a differentiable kernel, an estimate of the density gradi‐
ent can be defined as the gradient of the kernel density estimate; that is,

∇
^

f (x)=∇ f̂ (x)=
1

nh d ∑
i=1

n
∇K ( x − xi

h ) (1)

Conditions on the kernel K(x) and the window radio h are derived in [Fukunaga & Hoste‐
tler, 1975] to guarantee asymptotic unbiasedness, mean-square consistency, and uniform
consistency of the estimate in the expression (1). For a radial symmetry kernel,
K (x)=ck ( x 2)

where the profile is r = x 2, then; for example, for Epanechikov kernel (other choices are
possible as will be seen below),

KE (x)= {1 / 2cd
−1(d + 2)(1 - x 2)if x 2≤1

0 otherwise

The density gradient estimate becomes,

∇
^

f E (x)=
1

n(h dcd )
⋅

d + 2
h 2 ∑

xi∈Sh (x)
(xi − x)=

nx

n(h dcd )
⋅

d + 2
h 2 ( 1

nx
∑

xi∈Sh (x)
(xi − x)) (2)

where the region Sh (x) is a hypersphere of radius h having volume h dcd , centered at x, and
containing nx data points; that is, the uniform kernel. The last term in expression (2) is called
the sample mean shift,

Mh ,U (x)=
1
nx
∑

xi∈Sh (x)
(xi − x)=

1
nx
∑

xi∈Sh (x)
xi − x (3)
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The quantity 
nx

n (h dcd )
 is the kernel density estimate f̂ U (x) (the uniform kernel) computed

with the hypersphereSh (x), and thus we can write the expression (2) as:

∇
^

f E (x)= f̂ U (x)⋅
d + 2
h 2 Mh , U (x) (4)

which yields,

2

, 

ˆ ( )( ) ˆ2 ( )
E

h U
U

f xhM x
d f x

Ñ
=

+ (5)

Expression (5) shows that an estimate of the normalized gradient can be obtained by com‐
puting the sample mean shift in a uniform kernel centered on x. In addition, the mean shift
has the direction of the gradient of the density estimate at x when this estimate is obtained
with the Epanechnikov kernel. Since the mean shift vector always points towards the direc‐
tion of the maximum increase in the density, it can define a path leading to a local density
maximum; that is, to a mode of the density (see Fig. 1).

Figure 1. Gradient mode clustering.

In addition, expression (5) shows that the mean is shifted towards the region in which the
majority of the points reside. Since the mean shift is proportional to the local gradient esti‐
mate, it can define a path leading to a stationary point of the estimated density, where these
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stationary points are the modes. Moreover, as it was pointed out the normalized gradient in
expression (5) introduces a desirable adaptive behavior, since the mean shift step is large for
low density regions corresponding to valleys, and decreases as x approaches a mode. This is
possible to see in a clear way in Figure 2.

Figure 2. Local maxima of the probability density given by samples.

Mathematically speaking, this is justified since . Thus the corresponding

step size for the same gradient will be greater than that nearer mode. This will allow obser‐
vations far from the mode or near a local minimum to move towards the mode faster than

using  alone.

In [Comaniciu & Meer, 2002] it was proven that the mean shift procedure, obtained by successive:

• computing the mean shift vector Mh (x)

• translating the window Sh (x) by Mh (x) ,

guarantees convergence.

Therefore, if the individual mean shift procedure is guaranteed to converge, it is hoped that
a recursively procedure of the mean shift also converges. In other words, if we consider an
iterative procedure like the individual sum of many procedures of the mean shift and each
individual procedure converges; then, the iterative procedure also converges. The question
that continues open is when to stop the recursive procedure. The answer is in the use of the
entropy, as it will be shown in next Section.

2.1. Generalization

Employing the profile notation the density estimate can be written as [Comaniciu, 2000],

( )K̂ d
i 1

2n
i1 x xf (x) k hnh =

-
= å (6)
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By denoting withg = −k ′, that is, the profile defined by the derivative of profile k with the
sign changed (we assume that the derivative of k exits∀ x∈ 0, ∞)), excepting a finite set of
points), then the density gradient estimate (see expression (1)) becomes,

∇
^

f K (x)=∇ f̂ K (x)=
2

nh d +2∑
i=1

n
(x − xi)k

′( x − xi

h
2)

=
2

nh d +2 ∑
i=1

n
g( x − xi

h
2)
∑
i=1

n
xig( x − xi

h
2)

∑
i=1

n
g( x − xi

h
2) − x

(7)

where  is assumed to be nonzero.

One can observe that the derivate of the Epanechnikov profile is the uniform profile, while
the derivate of the normal profile remains as exponential.

The last bracket in expression (7) contains the mean shift vector computed with a kernel G(x)
defined by G(x)= cg( x 2), where c is a normalization constant, that is,
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( )
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x x

x x x x

x g x G
M (x) x x

g G

-

= =

- -

= =

-

= - = -
å å
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(8)

Then, the density estimate at x becomes,

( ) ( )ˆ i i
n n 2

G d d
i 1 i 1

h h
x x x x1 cf (x) G g

nh nh
- -

= =

= =å å (9)

By using the expressions (8) y (9), the expression (7) becomes,

∇
^

f K (x)= f̂ G(x)⋅
2

h 2c
Mh ,G(x) (10)

from where it follows that,
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ˆ ( )( ) ˆ2 ( )
K

h G
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f xh cM x
f x
Ñ

= (11)
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Expression (11) is a generalization of the mean shift vector. This allows to use other kernels;
for example, Gauss kernel, which gives wonderful results.

On the other hand, a digital image can be represented as a two-dimensional array of p-di‐
mensional vectors (pixels), where p =1 in the gray level case, three for color images, and p > 3
in the multispectral case. As was pointed in [Comaniciu & Meer, 2002] when the location
and range vectors are concatenated in the joint spatial-range domain of dimension d = p + 2,
their different nature has to be compensated by proper normalization of parameters h s and
h r . Thus, the multi-variable kernel is defined as the product of two radially symmetric ker‐
nels and the Euclidean metric allows a single bandwidth for each domain, that is:

 2 ps r
s r

2 2s r

, h h h hs r

C x x
(x) k  k K h h

=
æ ö æ ö
ç ÷ ç ÷

ç ÷ç ÷
è øè ø

(12)

where x s is the spatial part, x r is the range part of a feature vector, k(x) the common profile
used in both domains, h s and h r the employed kernel bandwidths, and C the corresponding
normalization constant.

One can observe in Figure 2 that the l2norm is implicitly used in order to define the neigh‐
borhoods of pixels. From a mathematical point of view the concept of norm is associated
with the size of the elements of a given space. Given a linear space L over a field K and an
element x∈ L  is defined as norm of x, denoted x , a finite functional which satisfies some
conditions [Domínguez & Rodríguez, 2009]. As we have pointed out, when Sh (x)is defined

as expression (2) implicitly makes use of the l2 norm defined as, x 2 = ∑
j=1

d
xj

2, x∈ℜd , since

Sh (x)= {x ´ : x − x´ 2≤h }.
Note that in order to verify the condition xi∈Sh (x) in (2), for each xiit is necessary to calcu‐
late x - xi 2which entails conducting d elevations to the second power, d-1 sums and calcu‐
lating one square root. Verifying the same condition using the l∞ norm, defined as

x ∞ =max
j

| xj |  only involves calculating the maximum value in the module of compo‐

nents of the difference vectorx − xi.

In [Domínguez & Rodríguez, 2009; Domínguez & Rodríguez, 2011], we carried out a theo‐
retical and practical study related with this issue. We proved the convergence of the mean
shift by using the l∞ norm. The convergence of mean shift for discrete data was proved in
[Comaniciu, 2000] using the l2 norm for defining the hypersphereSh (x). The following theo‐
rem guarantees the convergence when it replaces the l2 norm by the l∞norm. The proof is
similar to the theorem proved in [Comaniciu, 2000] and it can be found in [Domínguez &
Rodríguez, 2011].
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Theorem 1

Let f E

∧

=  {fk
∧

(yk, KE)} the sequence of density estimates obtained using Epanechnikov kernel and
computed in the points yk  defined by the successive locations of the mean shift procedure with uni‐

form kernel and N(x), denoting x N , a norm that satisfies N (x) ≤ x 2, ∀ x∈ℜ d . If the hyper‐
sphere Sh ( yk) is defined using N(x) ∀ k∈И, then the sequence is convergent.

As a direct consequence of this theorem, the mean shift algorithm converge using the l∞
norm when defining the hypersphere Sh (x)because x ∞ ≤ x 2, ∀ x∈ℜd .

3. Entropy

From the point of view of digital image processing, entropy of an image I is defined as:

E (I )= − ∑
x=0

2B−1
p(x)log2p(x) (13)

where B is the total quantity of bits of the digitized image and by agreement log2(0)=0; p(x)
is the probability of occurrence of a gray-level value. Within a totally uniform region, entro‐
py reaches the minimum value. Theoretically speaking, the probability of occurrence of the
gray-level value, within a uniform region is always one. In practice, when one works with
real images the entropy value does not reach, in general, the zero value. This is due to the
existent noise in the image. Therefore, if we consider entropy as a measure of the disorder
within a system, it can be used as a good stopping criterion, by the use of the mean shift
filtering, for an iterative process. Entropy within each region diminishes in measure in that
the regions become more homogeneous, and at the same time in the whole image, until
reaching a stable value. When convergence is reached, a totally segmented image is ob‐
tained, because the mean shift filtering is not idempotent. In addition, as in [Comaniciu &
Meer, 2002] was pointed out, the mean shift based image segmentation procedure is a
straightforward extension of the discontinuity preserving smoothing algorithm and the seg‐
mentation step does not add a significant overhead to the filtering process.

The choice of entropy as a measure of goodness deserves several observations. Entropy reduc‐
tion diminishes the randomness in corrupted probability density function and tries to counter‐
act noise. Then, by following this analysis, as the segmented image is a simplified version of the
original image, entropy of the segmented image should be smaller. Recently, it was empirical‐
ly found that the entropy of the noise diminishes faster than that of the signal [Suyash et. al.,
2006]. Therefore, an effective criterion to stop would be when the relative rate of change of the
entropy from one iteration to the next, falls below a given threshold. All these observations
were the main motivation in seeking a segmentation procedure from the iterations of the mean
shift filtering. This new algorithm is much simpler [Rodríguez & Suarez, 2006].
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4. Algorithms

In general, an image captured with a real physical device is contaminated with noise and in
most cases a statistical model of white noise is assumed, mean zero and variance σ. For
smoothing or elimination of this form of noise many types of filters have been published,
the most classic being the low pass filter. This filter indiscriminately replaces the central pix‐
el in a window by the average or the weighted average of pixels contained therein. The end
result with this filtering is a blurred image; since this reduces the noise but also important
information is taken away from the edges. However, there are low pass filtering techniques
that preserve the discontinuities and reduce abrupt changes near local structures. A diverse
number of approaches have been published taking into consideration the use of adaptive fil‐
tering. These range from an adaptive Wiener filter, local isotropic smoothing, to an aniso‐
tropic filtering. The mean shift works in the spatial-range domain, but differs from it in the
use of local information. The algorithm that was proposed in [Comaniciu & Meer, 2002] for
filtering through mean shift is as follows:

Let {xi}i and{zi}i, i =1, …, n be the input and filtered images in the joint spatial-range domain.

For each pixel p∈ xi, p =(x, y, z)∈ℜ3 , where (x, y)∈ℜ2 andz∈ 0, 2β −1 , β being the quanti‐
ty of bits/pixel in the image. The filtering algorithm comprises the following steps:

For each i =1, …, n

1. Initialize j =1 and y i,1 = p i.

2. Compute the mean shift in order to obtain the mode where the pixel converges; that is,
the calculation of the mean shift is carried out until convergence, y = y i,c.

3. Store at Z i the component of the gray level of calculated value:Zi =(xi
s, yi , c

r ), where xi
s

is the spatial component and yi ,c
r  is the range component.

4.1. Segmentation algorithm by recursively applying the mean shift filtering

4.1.1. Algorithm No. 1

Let ent1 be the initial value of the entropy of the first iteration. Let ent2 be the second value of the
entropy after the first iteration. Let errabs be the absolute value of the difference of entropy be‐
tween the first and the second iteration. Let edsEnt be the threshold to stop the iterations; that is,
to stop when the relative rate of change of the entropy from one iteration to the next, falls below
this threshold. Then, the segmentation algorithm comprises the following steps:

1. Initialize ent2 = 1, errabs = 1, edsEnt = 0.001.

2. While errabs > edsEnt, then

3. Filter the image according to the steps of the previous algorithm; store in Z [k] the fil‐
tered image.

4. Calculate the entropy from the filtered image according to expression (8); store in ent1.
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5. Calculate the absolute difference with the entropy value obtained in the previous step;
errabs = /ent1 – ent2/

6. Update the value of the parameter; ent2 = ent1; Z [k +1] = Z [k]

It can be observed that, in this case, the proposed segmentation algorithm is a direct exten‐
sion of the filtering algorithm, which ends when the entropy reaches stability. The effective‐
ness of this algorithm will be proven along this chapter. In this work the thresholding value
(edsEnt ) was empirically obtained. Recent investigations have proven that smaller values of
the threshold do not affect, qualitatively nor quantitatively in dependence on original im‐
age, the final result of the segmentation. One will be able to see these results in this chapter.
More details and discussion on this issue will be given in the next section.

In [Christoudias et. al., 2002], it was stated that the recursive application of the mean shift
property yields a simple mode detection procedure. The modes are the local maxima of the
density. Therefore, with the new segmentation algorithm, by recursively applying mean
shift, convergence is guaranteed. Indeed, the proposed algorithm is a straightforward exten‐
sion of the filtering process. In [Comanociu, 2000], it was proven that the mean shift proce‐
dure converges. In other words, one can consider the new segmentation algorithm as a
concatenated application of individual mean shift filtering operations. Therefore, if we con‐
sider the whole event as linear, the recursive algorithm converges.

4.1.2. Algorithm No. 2: Binarization algorithm by recursively applying the mean shift filtering

This algorithm is very similar to the algorithm No. 1, only that in this occasion two steps are
added. This continue of this way,

1. Initialize ent2 = 1, errabs = 1, edsEnt = 0.001.

2. While errabs > edsEnt, then

• 2.1. Filter the image according to the steps of the previous algorithm; store in Z [k] the
filtered image.

• 2.2. Calculate the entropy from the filtered image according to expression (6); store
in ent1.

• 2.3. Calculate the absolute difference with the entropy value obtained in the previous
step; errabs = /ent1– ent2/.

• 2.4. Update the value of the parameter; ent2 = ent1; Z[k +1] = Z[k].

3. To carry out a parametric logarithm (parlog = 70, this is the parameter).

4. Binarization: to assign to the background the white color and to the objects the black color.

In the experimentation was proven that the final result is not very sensitive to this parame‐
ter, because a variation in the range from 60 to 90 led to the same result [Rodriguez, 2008].
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5. Used standard images and utilized real images. Some characteristics

In Figure 3 a representation of the used standard images for this research appear. Some
characteristics on these standard images can be commented.

Figure 3. Standard images. (a) Cosmonaut, (b) Baboon, (c) Barbara, (d) Bird, (e) Cameraman, (f) Peppers, (g) Lake, (h)
Mountain, (i) Lena.

For example, one can observe that some of these images are rich in high frequencies (Ba‐
boon and Barbara), other are rich in low frequencies (Bird and Peppers, these have more
homogeneous  zones)  while  other  images  have  both,  low and high  frequencies  (Cosmo‐
naut and Cameraman). These characteristics will influence on the behavior of iterative al‐
gorithm, in particular, on the number of iterations. This issue will be deeply analyzed in
Section of experimental results.

Other real images used in this work can be seen in Figure 4. These images are biopsies,
which represent an angiogenesis process in malignant tumors. These were included in par‐
affin by using the inmunohistoquimic technique with the complex method of avidina bioti‐
na. Finally, monoclonal CD34 was contrasted with green methyl to accentuate formation of
new blood vessels (angiogenesis process). These biopsies were obtained from soft parts of
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human bodies and the images were captured via MADIP system with a resolution of
512x512x8 bit/pixels [Rodríguez et. al., 2001].

Several notable characteristics of these images there are; which are common to typical im‐
ages  that  we  encounter  in  the  tissues  of  biopsies.  For  example,  the  intensity  is  slightly
darker  within  the  blood vessel  than in  the  local  surrounding background.  It  is  empha‐
sized that this observation holds only within the local surroundings. In addition, due to
acquisition  protocol,  the  images  are  corrupted  with  a  lot  of  noise.  For  more  details  on
these images refer to [Rodríguez et. al., 2005].

Figure 4. These images represent the angiogenesis process. The blood vessels are marked with arrows.

6. Experimental results and discussion

Image segmentation, that is, classification of the image intensity-level values into homoge‐
neous areas is recognized to be one of the most important steps in any image analysis sys‐
tem. Homogeneity, in general, is defined as similarity among the pixel values, where a
piecewise constant model is enforced over the image [Comaniciu and Meer, 2002].

All the segmentation experiments in this work were performed by using a uniform kernel.
In order to be effective the comparison of the obtained results with our algorithm and with
the EDISON system [Christoudias et. al., 2002], the same parameters (hr and hs), in both pro‐
cedures, were used.

The value of hs is related to the spatial resolution of the analysis while the value hr defines
the range resolution. It is necessary to note that the spatial resolution hs has a different effect
on the output image when compared to the gray level resolution (hr, spatial range). Only fea‐
tures with large spatial support are represented in the segmented image with our algorithm
when hs is increased. On the other hand, only features with high contrast survive when hr is
large. Therefore, the quality of segmentation is controlled by the spatial value hs and the
range (gray level) hr, resolution parameters defining the radii of the (3D/2D) windows in the
respective domains. As our algorithm is a direct extension of the filtering algorithm similar
behavior was also reported in [Comaniciu and Meer, 2002]. In addition, as our algorithm
does not need parameter M, for the effects of the comparison the same one was set to M = 1
in the EDISON system.

Advances in Image Segmentation60



The first preliminary results when applying our algorithm were published in the year 2006
[Rodríguez & Suarez, 2006]. In those researchers a quantitative comparison was not carried
out, the comparison was only visual. The aim of that moment was alone to give to know the
existence of our algorithm and to carry out a comparison with another established already
[Christoudias et. al., 2002]. A deeper explanation on the characteristics of our algorithm was
published in the year 2011[Rodríguez et. al., 2011a]. Nevertheless, two examples of the re‐
sults reached in the year 2006 appear in the Figure 5 and 6.

Figure 5. a) Original image, (b) Segmented image according to our algorithm (hs, hr) = (12, 15), (c) Segmented image
by using EDISON system (hs, hr, M) = (12, 15, 1).

Figure 6. a) Original image, (b) Segmented image by our strategy (hs, hr) = (12, 15), (c) Segmented image according to
EDISON system, (hs, hr, M) = (12, 15, 1). The arrows in the Fig. 2(b) indicate better segmented regions.

From the point of view of the final result, the image segmented with our algorithm has a
more natural aspect. In many occasions, given the application, segmentation imposes certain
conditions (elimination of regions, pruning or integration of certain maxima, etc). This can
originate a biased image with regard to the original image. With our algorithm the resolu‐
tion is only imposed on the segmentation process; that is, the parameters hr and hs. For this
reason, our algorithm does not make mistakes; that is, a segmented image, very different to
the original image, is not obtained. This is one of the most important experimental results
obtained with our algorithm.

It is important to point out that with both algorithms (the proposed one and the EDISON
system) very similar results were obtained (only differences in very few regions; see the ar‐
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rows). The substantial difference between both algorithms is the one shown in Fig. 6(c), it
was necessary to carry out a filtering step and later on a segmentation step. In this last step,
one can have certain complexity when adjacency graphs and hierarchical techniques are
used [Comaniciu, 2000]. With our algorithm the segmented image is directly obtained from
the filtering process. However, it is necessary to have in mind that segmentation is very de‐
pendent on the application. For this reason, in order to compare our proposal with EDISON
system, the most remarkable differences were looked for.

Figure 7. a) Original image, (b) Binarized image by using our new algorithm, (c) Binarized image by using graph [Ro‐
driguez, 2008], (d) Binarized image via Otsu’s method [ Otsu, 1978].

Note in Figure 5 that the clouds and the sky were better isolated with our algorithm. This
result is explained by the fact that our algorithm is a direct extension of the filtering process
and, therefore, it does not produce many mistakes. In [Grenier et. al., 2006] the mean shift
filtering was also iteratively applied in order to increase the smoothing effect. However, the
difference with our algorithm is that in that work a stopping criterion was not given. The
authors iterated the mean shift 10 times before starting the segmentation process.

A direct application of our algorithm for the binarization of blood vessels in an angiogen‐
esis  process was published in [Rodriguez,  2008].  Two examples appear in the Figures 7
and 8. In the year 2005 were obtained a similar result with a more complicated algorithm
[Rodríguez et. al., 2005].
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Figure 8. a) Original image, (b) Binarized image by using our new algorithm, (c) Binarized image by using graph, (d)
Binarized image via Otsu’s method.

It is evident to observe that the binarized image by using the new algorithm has a better ap‐
pearance than the obtained image by using graph. Note, in this case, that the binarization
algorithm by using graph made a mistake (see arrow in Figure 8 (c)). In practice, it has been
proven that this behavior did not always happen with all images and in the corners of the
images this was manifested fundamentally. We note in Figures 7 and 8 that the binarized
image using the algorithm No. 2 was cleaner and it did not accentuate the spurious informa‐
tion that appears in the original image (see arrows in Figure 7(a)). According to criterion of
pathologists these objects (spurious, with little contrast) were originated by a problem in the
preparation of the samples. The obtained result by using Otsu’s method is evident, a lot of
noisy arose. This best result with the new binarization algorithm is because the same one is a
direct extension of the filtering process. The parameter used to carry out the parametric log‐
arithm was similar to 70 and this value was the same for all the binarized images. For more
details on these results see [Rodriguez, 2008].

As it was expressed previously the l2norm is implicitly used in order to define the neighbor‐
hoods of pixels when working with the mean shift. An interesting issue is to analyze that it
happens when substituting the l2norm by the l∞ norm. In such a sense, we will show a series
of experiments conducted with the aim of comparing, in terms of execution time and degree
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of homogenization, the obtained results by two segmentation algorithms. The graphic of the
time spent by both algorithms on a group of standard images is presented and analyzed. In
order to carry out the comparison of the obtained results the same parameters (h r = 15 and h
s = 4) in both procedures, by using the l∞norm and the l2 norm were used.

In Fig. 9 (c), the segmentation of the image Astro is presented by using the algorithm No.1
described in Section 2.3.1. In Fig. 9 (b) the result using the algorithm that makes use of the l∞
norm is shown. In Fig. 9 (b) it can be seen that the segmented image using the l∞norm
presents a greater degree of homogenization. Comparing these images visually, it is evident
that the use of the l∞ norm leads to a greater similarity in the value of intensity of certain
groupings of pixels (see Earth zone). This greater degree of homogenization can be seen as
an advantage if the algorithm is used in an application where one wants to extract the figure
of the astronaut. However, in an application where the objects of interest are the clouds,
their elimination would become a drawback. This corroborates that the segmentation is
heavily dependent on the application.

Figure 9. a) Original image, (b) Segmented image using the l∞norm, (c) Segmented image using the l2norm.

Figure 10. a) Original image, (b) Segmented image using the l∞ norm, (c) Segmented image using the l2 norm.

Other example of segmentation is presented in Figure 10 by using standard images. As in
the previous example, there is again a greater homogenization when the neighborhood by
using the l∞ norm is defined. In this case, from a standpoint of a visual comparison, in Fig‐
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ure 10(b) the arrows indicate parts of major homogenization. For example, in the image of
Figure 10(c), where the l2norm is used, the boxes indicate parts which have a lesser degree of
homogeneity between the pixels that represent the grass of the field.

Figure 11 shows a graphic of the execution times of the algorithms that make use of the l∞
and l2 norms. The values of the runtime for each image using the l2norm in the definition of
Sh (x)are represented by circles, while the squares represent the runtime associated with the
l∞norm. As is shown in Figure 11, in general, the runtime of the algorithm that makes use of
the l∞norm is higher than using the l2 norm.

Figure 11. Runtime of the algorithms for standard images.

The greater homogenization observed using the l∞norm to defineSh (x) suggests the search
for values h s and hr in order to obtain more efficient results and smaller runtime. The read‐
ers interested in deepening in these results to see [Domínguez & Rodríguez, 2009].

Another issue that attracted the attention of the authors was the theoretical demonstration
of the mean shift when the l∞norm is used. The convergence of the algorithm by using the l∞
norm was empirically shown through an extensive experimentation [Domínguez & Rodrí‐
guez, 2009]. In [Domínguez & Rodríguez, 2011] was proven a theorem which guarantees the
convergence of the l∞norm instead of the l2 norm in order to define the regionSh (x). The
convergence of mean shift for discrete data was proved in [Comaniciu, 2000] using the l2
norm for defining the hypersphereSh (x).

Table 1 shows the obtained results using hr=8 and hs=2. As can be seen, for these values, execu‐
tion times were lower using thel2norm. The values were comparable with those obtained using
the l∞ norm in order to define the neighborhoods of the pixels and the maximum difference be‐
tween the runtimes was 96,876 seconds, which was obtained with the image Baboon.
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Image Norm hr hs Time

Cosmonaut256 l2 8 2 186.1410

Cosmonaut256 l∞ 8 2 207.6880

Baboon256 l2 8 2 76.4370

Baboon256 l∞ 8 2 173.3130

Barbara256 l2 8 2 96.6570

Barbara256 l∞ 8 2 156

Bird256 l2 8 2 82.7810

Bird256 l∞ 8 2 78.6250

Cameraman256 l2 8 2 124.0470

Cameraman256 l∞ 8 2 209.2030

Peppers256 l2 8 2 94.0780

Table 1.

Image Norm hr hs Time

Cosmonaut 256 l2 15 4 164.8590

Cosmonaut 256 l∞ 15 4 179.2660

Baboon256 l2 15 4 332.5160

Baboon256 l∞ 15 4 348.3130

Barbara256 l2 15 4 235.2970

Barbara256 l∞ 15 4 134.0780

Bird256 l2 15 4 107.2810

Bird256 l∞ 15 4 127.0630

Cameraman256 l2 15 4 263.4380

Cameraman256 l∞ 15 4 317.1870

Peppers256 l2 15 4 267.2650

Peppers256 l∞ 15 4 328.3590

Table 2.

In Table 2, it can be seen that for window sizes hr=15 and hs=4 the runtime was in favour of
the l2norm (difference of 61,094 seconds). This result was obtained with the image Peppers.
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However, one can observe that in most of the images the difference of the runtimes were
decreased when the values hr=8 and hs=2 were used (see Table 1). Moreover, in case of im‐
age Barbara the runtime using the l∞ norm was smaller than the runtime using l2norm. The
difference was 101.219 seconds.

This suggests the use of the l∞norm in segmentation of high-resolution images, which may
be necessary in many practical cases; it can be an interesting tool in order to obtain more
efficient results. It was evidenced, through an extensive experimentation using standard im‐
ages, that the use of the l∞ norm, instead of l2norm, decreases the runtime of the mean shift
when the values of bandwidths h s and h r increase. For more details on this issue see [Domí‐
nguez & Rodríguez, 2011].

Another application of our algorithm was in the medical image segmentation. It is of noticing
that the mean shift can be considered as a segmentation unsupervised method. Unsupervised
methods, which do not assume any prior scene knowledge which can be learned in order to
help segmentation process, it are obviously more challenging than the supervised ones.

In order to have more clarity of the medical images that will be segmented, some details of
the original images are given. Studied images were of arteries, which have atherosclerotic
lesions and these were obtained from different parts of the human body. These arteries were
contrasted with a special tint in order to accentuate the different lesions in arteries. The ar‐
teries were digitalized directly from the working desk via MADIP system with a resolution
of 512x512x8 bit/pixels [Rodríguez et. al., 2001]. For more details on the characteristics of
these images one can see [Rodríguez & Pacheco, 2007]. Another lesion type that were isolat‐
ed is caused by disease of the visual system, glaucoma. "Glaucoma" is a term used for a
group of diseases that can lead to damage to the optic nerve and result in blindness.

Figure 12. a) Original image, b) Unsupervised segmentation by using our algorithm. The arrows mark the isolated lesions.

In Figure 12, an example of segmentation on artery by using our algorithm is shown. Al‐
though another segmentation method was already applied to other atherosclerotic lesions
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[Rodríguez & Pacheco, 2007]; here one can observe the obtained result when applying our
unsupervised strategy.

In Figure 12, one can note that the lesion IV that appears in the original image was isolated
(see arrows in Fig. 12 (a)). According to the criterion of physicians this is a good result, be‐
cause the algorithm is able to isolate the lesion without any previous condition. Moreover,
one also can see that the segmented image with the mean shift algorithm is totally free of
noise. This is another important aspect when the mean shift filtering is used.

Figure 13. a) Original image. b) Segmentation by using our unsupervised strategy. The arrow indicates the isolated lesion.

Another example is shown in Figure 13. In this case, the main objective is to isolate the oval
from the vascular net of the eye (see arrow). This is of great importance for the study of the
glaucoma disease. According to the criterions of physicians, the discrimination of this area is
of great importance in order to know the advancement of the disease. In this case, this zone
is isolated appropriately. A quantitative comparison of all the shown experimental results
can be found in the presented references of the own authors [Rodríguez & Tovar, 2010].

Other issue of interest of the authors was to study the behaviour of the algorithm, taking
into consideration the number of iterations and the degree of homogenization of the seg‐
mented images, for different values of the stopping threshold and window sizes. First, we
go to analyze what happens when the values of the stopping threshold goes decreasing, and
later on we will carry out an analysis when varying the window sizes.

The segmentation of the Astro's image for different values of the stopping threshold is
shown in Figure 14. One can appreciate that the number of iterations increased in an abrupt
way when the parameter edsEnt diminished from 0.001 to 0.0001. However, from the point
of view of a visual analysis a substantial change is not noticed in these segmented images
(see Figures (f) and (g)). Homogenization is very similar. For such a reason in [Rodríguez et.
al., 2012], a comparison through the XOR was carried out in order to better appreciate the
difference among these images.
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Figure 14. a) Original image (Astro), (b) Segmentation for edsEnt = 0.1, 2 iterations, (c) Segmentation for edsEnt =
0.05, 2 iterations, (d) Segmentation for edsEnt = 0.01, 4 iterations, (e) Segmentation for edsEnt = 0.005, 5 iterations, (f)
Segmentation for edsEnt = 0.001, 7 iterations, (g) Segmentation for edsEnt = 0.0001, 60 iterations.

In this research, all the segmentation procedures were carried out by using a uniform kernel.
We used the same window size in all the experiments (hr = 15, hs = 4), with the aim that the
comparison of the obtained results was valid for different values of the stopping threshold
(parameter edsEn).

One can observe that, in dependence on the image features the number of iterations varied
and the same one has not a lineal behaviour. Figure 15, it presents the obtained segmenta‐
tion results with the baboon's image. To observe, for example, that for edsEnt = 0.005 the im‐
age of Figure 14 (e) was obtained in 5 iterations, while for that same value, the image of
Figure 15 (e) was attained in 14 iterations. This is due to the quantity of low or high frequen‐
cies of the original image. Note that, the image of Figure 14 is rich in low frequencies (this
image has more homogeneous areas). Opposite happens with the image of Figure 15 (this
image is rich in high frequencies).
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Figure 15. a) Original image (Baboon), (b) Segmentation for edsEnt = 0.1, 2 iterations, (c) Segmentation for edsEnt =
0.05, 3 iterations, (d) Segmentation for edsEnt = 0.01, 5 iterations, (e) Segmentation for edsEnt = 0.005, 14 iterations,
(f) Segmentation for edsEnt = 0.001, 27 iterations, (g) Segmentation for edsEnt = 0.0001, 57 iterations.

Image EdsEnt No. Iterac EdsEnt No. Iterac EdsEnt No. Iterac

Astro 0.1 2 0.05 2 0.01 4

Baboon 0.1 2 0.05 3 0.01 5

Bird 0.1 2 0.05 2 0.01 3

Barbara 0.1 2 0.05 2 0.01 2

Image EdsEnt No. Iterac EdsEnt No. Iterac EdsEnt No. Iterac

Astro 0.005 5 0.001 7 0.0001 60

Baboon 0.005 14 0.001 27 0.0001 57

Bird 0.005 4 0.001 18 0.0001 19

Barbara 0.005 8 0.001 8 0.0001 42

Table 3. Values of the stopping threshold (EdsEnt) and number of iterations.
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Figure 16. a) Original image (Astro), (b) Segmentation for hr = 5 and hs = 2, 6 iterations, (c) Segmentation for hr = 7
and hs = 4, 7 iterations, (d) Segmentation for hr = 9 and hs = 6, 12 iterations, (e) Segmentation for hr = 11 and hs = 8,
65 iterations, (f) Segmentation for hr = 13 and hs = 10, 70 iterations, (g) Segmentation for hr = 15 and hs = 12, 11
iterations, (h) Segmentation for hr = 17 and hs = 14, 39 iterations, (i) Segmentation for hr = 19 and hs = 16, 55 itera‐
tions, (j) Segmentation for hr = 21 and hs = 18, 7 iterations, (k) Segmentation for hr = 23and hs = 20, 7 iterations, (l)
Segmentation for hr = 25 and hs = 22, 37 iterations, (m) Segmentation for hr = 27 and hs = 24, 4 iterations, (n) Seg‐
mentation for hr = 29 and hs = 26, 23 iterations, (o) Segmentation for hr = 31 and hs = 28, 17 iterations. The arrow
indicates the cloud permanency for that window size (image (h)).
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It is necessary to point out that, for large values of the stopping threshold (edsEnt), the num‐
ber of iterations had a very similar behaviour for images rich in low frequencies as well as
for images rich in high frequencies (see Table 3 and Figures 14 and 15). On the other hand,
one can appreciate that, in this image (see Figure 15), the number of iterations also increased
abruptly when the stopping threshold was from edsEnt = 0.001 to 0.0001. However, between
the two images (see Figures 15 (f) and (g)), the difference is not visually appreciated. This
appreciation was also analysed with more detail in [Rodríguez et. al., 2012].

This same study was carried out, fixing the value of stopping threshold, for different values
of window sizes (parameters hs and hr). In this case the selected stopping threshold was ed‐
sEn = 0.001 (see algorithm No. 1). The segmentation of the Astro's image for different param‐
eters hr and hs, in Figure 16 is represented.

Figure 17. Graph that represents the number of iterations vs. the window sizes. Note the undulant behavior of the
number of iterations with regard to the window sizes.

Some interesting comments arise of the obtained results that appear in Figure 16. Observe
that, proportionally to the increase of the width of the radii hr and hs, the homogenization
degree increased in the segmented image. However, the number of iterations had a behavior
that fluctuated. In other words, the number of iterations did not increase lineally, in this im‐
age, when increased the radius hr and hs. Note that, in small radius the segmentation was
very rude. One can observe that visually, homogeneous areas were not denoted with regard
to the original image (see Figures 16 (b), (c) and (d)).
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Figure 18. a) Original image (Lena), (b) Segmentation for hr = 5 and hs = 2, 14 iterations, (c) Segmentation for hr = 7
and hs = 4, 16 iterations, (d) Segmentation for hr = 9 and hs = 6, 25 iterations, (e) Segmentation for hr = 11 and hs = 8,
48 iterations, (f) Segmentation for hr = 13 and hs = 10, 25 iterations, (g) Segmentation for hr = 15 and hs = 12, 20
iterations, (h) Segmentation for hr = 17 and hs = 14, 26 iterations, (i) Segmentation for hr = 19 and hs = 16, 24 itera‐
tions, (j) Segmentation for hr = 21 and hs = 18, 21 iterations, (k) Segmentation for hr = 23and hs = 20, 26 iterations, (l)
Segmentation for hr = 25 and hs = 22, 13 iterations, (m) Segmentation for hr = 27 and hs = 24, 5 iterations, (n) Seg‐
mentation for hr = 29 and hs = 26, 8 iterations, (o) Segmentation for hr = 31 and hs = 28, 10 iterations. The arrows
indicate the permanency of stains for those window sizes.
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However, for window sizes very big the earth is totally homogeneous (see arrow in Fig. 16
(i)). In other words, starting from hr = 19 and hs = 16, the earth in totally uniform (see Figures
16 (j), (k) and (l)). Moreover, one visually does not observe difference among these images.
Alone, in the images of Figures (n), (m) and (o), the feet of the cosmonaut were combined
with the gray level of the earth. In order to verify this visual impression, a comparison of
these images through the Xor was carried out in [Rodríguez et. al., 2011b]. On the other
hand, it is possible to see that, in all these segmented images (for big window sizes), the be‐
havior of the number of iterations was also oscillating; that is, these did not grow propor‐
tionally when increased the window sizes (see Fig. 17).

Figure 18 shows the obtained results with the image of Lena. Observe in Figure 18 that,
the same as in the previous example, proportionally to the increase of the width of the ra‐
dius hr and hs, the degree of uniformity increased in the segmented images. However, in
this case for small radii, contrary to the previous example, the numbers of iterations were
bigger. The explanation of this behavior, it comes given by the characteristics of the origi‐
nal image (high frequencies in the image). On the other hand, the number of iterations in
this example also had an oscillating behaviour, that is; these did not increase proportion‐
ally with the window sizes.

Figure 19. Graph that represents the number of iterations vs. the window sizes. Note the undulant behavior of the
number of iterations with regard to the window sizes.

In this result, one can see that, starting from hr = 13  and hs = 10,  the face of woman be‐
gins to be uniform and the stain below of the left eye disappeared (see arrow in Fig. 18
(e)). Moreover, starting from hr = 19 and hs = 16, the face of woman is totally uniform and
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the shade that is under the nose also disappears (see arrow in Fig. 18 (h)).  Here also in
these results  the behavior  of  the number of  iterations,  in  relation to  the  increase of  the
window  sizes  hr  and  hs,  were  oscillating;  these  did  not  grow  proportionally  when  in‐
creased the window sizes (see Fig. 19).

By way of summary, in Table 4, the window sizes and the iteration numbers appear for each
of the segmented images.

Astro(hr, hs) No. Iter. Lena (hr, hs) No. Iter.

5 2 6 5 2 14

7 4 7 7 4 16

9 6 12 9 6 25

11 8 65 11 8 48

13 10 70 13 10 25

15 12 11 15 12 20

17 14 39 17 14 26

19 16 55 19 16 24

21 18 7 21 18 21

23 20 7 23 20 26

25 22 37 25 22 13

27 24 4 27 24 5

29 26 23 29 26 8

31 28 17 31 28 10

Table 4. Window sizes (hr and hs) and the iteration numbers.

Table 4, it offers a comparative panoramic vision of all the segmented images. Also, one can
see the behaviour of the iteration numbers with regard to the window sizes. This behaviour
can be explained via Figure 20. In Figure 20, the value of hs is related to the spatial resolu‐
tion of the analysis while the value hr defines the range resolution. The spatial resolution hs
has a different effect on the output image when compared to the gray level resolution (hr,
spatial range). Only features with large spatial support are represented in the segmented im‐
age with our algorithm when hs is increased. On the other hand, only features with high
contrast survive when hr is large. Then, as 2xhs establishes the range of the movement spa‐
tially and in the range of 2xhr is carried out an averaged; then the characteristics of image in
this range (2xhr) will influence on this average (bigger quantity of low or high space fre‐
quencies). This issue is what produced the oscillation, in the iteration number, when varying
the window sizes (hr and hs). In addition, it is necessary to point out that the iteration num‐
ber did not have relationship some with the quality of the segmented image. For example,
with small windows can be bigger the number of iterations that with big windows; howev‐
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er, it was observed that with small window sizes the segmentation was rude. A quantitative
comparison of these results can be found in [Rodríguez et. al., 2011b].

Figure 20. Graphic representation of the radius hr and hs. Movement through an image.

6.1. Some related philosophical issues with image segmentation

Segmentation is recognized to be one of the most important steps in most high-level image
analysis systems. Its precise functioning highly determines the performance of the entire
system. Image segmentation is today routinely used in a multitude of different applications,
such as: medical diagnosis, treatment planning, robotics, pathology, geology, anatomical
structure studies, meteorology and computer-integrated surgery, to mention a few. Howev‐
er, image segmentation remains a difficult task due to both the diversity of the object’s
shape and image’s quality. In spite of the most elaborated algorithms developed until now,
segmentation remains a very dependent procedure of the application. Until now any single
method that can cope with all the problems that can be found does not exist and unfortu‐
nately, segmentation remains a complex problem with no exact solution.

For example, of the segmented images those appear in Figure16, which to select as the best
segmented image? The answer to this question is not direct, because it depends on the aim
of observer. If one wants, for example, a good segmentation of the sky and the earth, the
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segmented images of Figure 16 (m), (n) and (o), these would be the most appropriate. How‐
ever, one can observe in these images that the feet of the astronaut are practically lost.
Therefore, if the aim of observer was a good segmentation of the astronaut, these images
(Figs. 16 (m), (n)) would not be the best selection. For this aim, the images chosen in Figure
16 would be those (i), (j) or (k). This corroborates that the segmentation is heavily dependent
on the application. All this analysis, the reader could carry out it to the segmented images
that in Figure 18 appear.

In those segmentation applications where one wants a binary image and the background and
objects only should appear; for example, to count regions, the problem could be a little less
complicated. An example of this issue is in the count of blood vessels (see Figure 8). Here, one is
speaking of segmented images where the final result is a bit/pixel. The problem of segmenta‐
tion begins to get complicated when the segmented image has several regions, more than 5, 6,
7, 8, 9, …… bit/pixel, and mainly when one is working with unsupervised segmentation strat‐
egies. In the measure that is bigger the number of bit/pixel of the segmented image, the seg‐
mentation  problem  is  much  more  complicated.  For  example,  in  the  case  of  supervised
segmentation the number of bit/pixel (number of regions) is controlled by the observer and in
many practical applications this segmentation method is not very problematic.

On the other hand, one should have in mind the features of the original image. In general, be‐
fore that the segmentation process is carried out, the original image should be filtered through
a low pass filter. In many practical applications this step is very important and many times the
final result of segmentation depends on this step. When one uses the iterative algorithm of
mean shift this step is implicit, because the mean shift itself is a low pass filter.

The election of one or another segmentation method depends on several factors, namely: a) on
the knowledge that the observer has on the method, b) of the application in itself, c) of features
of the original image, among others. A universal method of segmentation has not been created,
due to that the world of images is practically infinite. For example, the interpretation that a
pathologist makes from a biopsy image; which necessarily goes by a segmentation process, it is
different to the interpretation that a radiologist makes from a radiological image. It is evident
that both are different applications. One could continue analyzing the segmentation issue, but
this is an open theme which it will need of many more iterations.

7. Conclusions

In this chapter, we carried out an introduction on theoretical aspects of the mean shift. We
also introduced the idea of working with l∞ norm and we proved that, of this way, one can
obtain bigger homogenization degree. We proved the convergence of the mean shift by us‐
ing the l∞ norm.

The iterative algorithm that was used in this chapter, where entropy was utilized as a stop‐
ping criterion, it was presented too. Through an extensive experimentation by using real
and standard images, we showed and we discussed the obtained results with our iterative
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algorithm. We proved that our algorithm can be used as an unsupervised suitable strategy
to carry out complex problems of segmentation. Some application examples by using our al‐
gorithm were shown.

On the other hand, in order to prove the good performance of our algorithm, the same was
compared with another segmentation algorithm established already. Through several ex‐
periments with real images, we proved that the segmented images by using our iterative al‐
gorithm were less noisy than those obtained by means of other methods.

Finally, some related philosophical themes with image segmentation were discussed.
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Chapter 4

Constrained Compound MRF Model with Bi-Level Line
Field for Color Image Segmentation

P. K. Nanda and Sucheta Panda

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/50475

1. Introduction

Image segmentation is a basic early vision problem which serves as precursor to many high
level vision problems. Color image segmentation provides more information while solving
high level vision problems such as, object recognition, shape analysis etc. Therefore, the
problem of color image segmentation has been addressed more vigorously for more than
one decade. Different color models such as RGB, HSV, YIQ, Ohta (I1, I2, I3), CIE(XYZ, Luv,
Lab) are used to represent different colors [5]. From the reported study, HSV and (I1, I2, I3)
have been extensively used for color image segmentation. Ohta color space is a very good
approximation of the Karhunen-Loeve transformation of the RGB, and is very suitable for
many image processing applications [1]. Image Modeling plays a crucial role in image anal‐
ysis. Stochastic models, particularly MRF models, have been successfully used as the image
model for image restoration and segmentation [2], [3], [4]. MRF model has also been success‐
fully used as the image model while addressing the problem of color image segmentation
both in supervised and unsupervised framework. Kato et al [6] have proposed a MRF model
based unsupervised scheme for color image segmentation. In Kato 's method, the model pa‐
rameters have been estimated using Maximum Likelihood criterion and the only parameter
identified by the user is the number of class. This algorithm could be validated using differ‐
ent color textures and real images. Another color texture unsupervised segmentation algo‐
rithm has been proposed by Deng et al [7] and the method has been retermed as JSEG
method. Recently, an unsupervised image segmentation algorithm has been proposed by
Guo et al [8] where K-means has been used to initialize the classification in the classification
of numbers. Very recently Scarpa et al. [13] have proposed a multiscale texture model and a
related algorithm for the unsupervised segmentation of color images. In this scheme, the
feature vectors have been collected and based on the feature vector the textures are then re‐

© 2012 Nanda and Panda; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



cursively merged giving rise to larger and more complex textures. This algorithm could suc‐
cessfully be tested on real world natural and remote sensing images. The model parameters
can be estimated in both supervised and unsupervised framework [6].

In this piece of work, a Constrained Compound MRF model based color image segmenta‐
tion scheme is proposed in unsupervised framework. We have used Ohta (I1, I2, I3) color
space to model the color images. In the proposed scheme, the Constrained Compound MRF
model parameters and the image labels are estimated concurrently. Since the image label es‐
timates and the estimates of model parameters are dependent on each other, obtaining glob‐
al estimates of label as well as model parameters is very hard. Hence, we have proposed a
recursive scheme for estimation of image labels and model parameters. The recursive
scheme yields partial optimal solutions as opposed to optimal solutions. The MRF model
parameter estimation problem is formulated in Maximum Conditional Pseudo Likelihood
(MCPL) framework and the MCPL estimates are obtained using homotopy continuation
bases algorithm. The MCPL estimation strategy results in a set of nonlinear equations which
need to be solved to determine the model parameter estimates. Determination of the esti‐
mates is tantamount to determine the zeros of the unknown function. Homotopy continua‐
tion methods [14], [15] are globally convergent methods that have been used to trace the
zeros of a function and hence determines the solution of functions. We have developed the
fixed point based homotopy continuation method to estimate the model parameters. The
image label estimation problem is formulated in Maximum a Posteriori (MAP) framework
and the MAP estimates are obtained using the proposed hybrid algorithm [10]. The pro‐
posed supervised algorithm has been successfully tested on different images, however, for
the sake of illustration we have presented three results and a comparison is made with [9].

2. MRF model

MRF theory is a branch of probability theory for analyzing the spatial or contextual depend‐
encies of physical phenomena. It is used in visual labeling to establish probabilistic distribu‐
tions of interacting labels.

2.1. Neighborhood system and cliques

The sites in S are related to one another via a neighborhood system. A neighborhood system
for S is defined as

{ }/iN N i S= " Î (1)

Where Ni is the set of sites neighboring i. The neighboring relationship has the following
properties:

1. A site is not neighboring to itself: i∈Ni
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2. The neighboring relationship is mutual: i∈Ni ⇔ Ni 

( ) ( )( ) 2
/ , , , ,i i i i iN i S dist x y x y r i i¢ ¢

ì é ù¢ ¢= Î £ ¹í ë ûî
(2)

For a regular lattice S, the set of neighbors of i is defined as the set of sites within a radius of
r  from i.

Where dist (A, B) denotes the Euclidean distance between A and B and r takes an integer
value. The Fig 1 shows (η1) the first order and second order neighborhood system (η2).

Figure 1. (a) Figure showing first order (η1), second order (η2) and third order(η3)neighborhood structure (b) Cliques on
a lattice of regular sites.

The pair (S, N) = G constitutes a graph in the usual sense; s contains the nodes and N deter‐
mines the links between the nodes according to the neighboring relationship. A clique c for
(s, N) is defined as a subset of sites c={i, i’), or a triple of neighboring sites c = {i, i’, i’’), and so
on. The collections of single-site, pair-site and triple-site cliques will be denoted by C1, C2,
and C3 respectively, where

1 { / }C i i S= Î (3)
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''
2 {{ , } / , }iC i i i N i S= Î Î (4)

''' '' '
3 {{ , , } / , , }C i i i i i i Sareneighborstoone another= Î (5)

The sites in a clique are ordered, and {i, i’} is not the same clique as {i’, i}, and so on. The
collection of all cliques for (S, N) is

1 2 3 .....C C C C= U U U (6)

The type of a clique for (S, N) of a regular lattice is detetrmined by its size, shape and orien‐
tation. Fig. 1 shows the clique types for the first order and second order neighborhood sys‐
tems for a lattice [2] [3].

Let Z = {Z1, Z2, ..., Zm} be a family of random variables defined on the set S, in which each
random variable Zi takes a value zi in L. The family Z is called a random field. We use the
notion Zi = zi to denote the event that Zi takes the value zi and the notion
(Z1 = z1, Z2 = z2, ...., Zm = zm).

To denote the joint event. For simplicity a joint event is abbreviated as Z = z where
z = {z1, z2, ...} is a configuration of z, corresponding to realization of a field. For a discrete
label set L. the probability that random variable Zi takes the value zi is denoted P(Zi = zi),
abbreviated P(zi) and the joint probability is denoted as
P(Z = z) = P(Z1 = z1, Z2 = z2, ..., Zm = zm) and abbreviated P(z).

F is said to be a Markov Random Field on S with respect to a neighborhood system N if and
only if the following two conditions are satisfied:

( ) 0, ( )P Z z z Z Positivity= > " Î (7)

( / ) ( / ) ( )
ii S i i NP z z P z z Markovianity- = (8)

Where S-i is the set difference, zS-I denotes the set of labels at the sites in S-i and

'
'{ / }

iN iiz z i N= Î (9)

Stands for the set of labels at the sites neighboring i.

The positivity is assumed for some technical reasons and can usually be satisfied in practice.
The Markovianity depicts the local characteristics of Z. In MRF, only neighboring labels
have direct interactions with each other[2][3].
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The concept of MRF is a generalization of that of Markov processes (MPs) which are widely
used in sequence analyisis. An MP is defined on a domain of time rather than space. It is a
sequence of random variables Z1, Z2, …., Zm defined in the time indices 1, 2, …, m. It is gen‐
eralized into MRFs when the time indices are considered as spaial indices.

3. Compound Markov Random Field (COMRF) model

Capturing salient spatial properties of an image lead to the development of image models.
MRF theory provides a convenient and consistent way to model context dependent entities
for e.g. image pixels and correlated features [6]. Though the MRF model takes into account
the local spatial interactions, it has its limitations in modeling natural scenes of distinct re‐
gions. In case of color models, it is known that there is a correlation among the color compo‐
nents of RGB model. In our formulation, we have decorrelated the color components and
introduced an interaction process to improve the segmentation accuracy. We have em‐
ployed inter-color-plane interaction (Ohta I1, I2, I3 color model) process which reinforces par‐
tial correlation among different color components.

In this work, a compound MRF model has been proposed and the proposed model is based
on the following notion. The prior MRF model takes care of (i)Intra-color-plane I1 or I2 or I3 I1,
I2, and I3 entities of each color plane(ii)Inter-color-plane interactions of pixels of different col‐
or planes for e.g. I1 and I2, and I3. The MRF prior model takes care of the spatial interactions
in any given color plane and also interaction of a pixel of a given color plane with the pixel
of other color planes. Thus the intra color plane and inter color plane interactions could be
modeled by the compound MRF model. Motivation behind this modeling is as follows. It is
known that strong correlation exists among different color planes of RGB model and there‐
fore not suitable for image segmentation. On the other hand Ohta model is suitable for im‐
age segmentation because of the existing weak correlation among color planes. In order to
develop an appropriate color model, we develop a model with controlled correlation among
the different color planes. Therefore, the a prior compound MRF model takes care of the
controlled correlation among the different planes of Ohta colorspace. The degree of correla‐
tion is controlled by the associated parameters of the clique potential function I1, I2, I3. The
values of these parameters are quite low and hence provide a controlled weak correlation
among the inter planes making it suitable for image segmentation.

We assume all images to be defined on discrete rectangular lattice MxN. In the following the
Compound MRF model is developed. Let the observed image X be modeled as a random
field and x is a realization which is the given image. Let Z denote the label process associat‐
ed with the segmented image Fig.2(a) shows the three planes of Ohta color model. Each col‐
or plane is modeled by a MRF model. Let L denote the number of labels. For a given plane
for example Z, if the spatial interactions are modeled by MRF, then the prior probability dis‐
tribution P(Z) is Gibbs distributed and can be expressed as
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( ) ( ) ( )1 ,1 1 1 /
U z

P Z z z e
q

q
-

¢= = (10)

where Z ′ =∑
z ′

e −U (z ′,θ) is the partition function, U (z 1, θ) is the energy function and is of the

form U (z ', θ) = ∑
c∈C

Vc(z
', θ) being referred to as cliqe potential function, θ denotes the cli‐

que parameter vector. Analogously the spatial interactions of I2 and I3 planes can be defined.
This prior MRF model taking care of all the three spatial planes would result in the energy
function of the following form

( ) ( ) ( )

( )

( ) ( )

,

,

1 /

, ,

U z

U z

z

c
c C

P Z z z e

z e

U z V z

q

q

q

q q

-

-

Î

¢= =

¢ =

=

å

å
(11)

where, Vc(z, θ) denotes the clique potential function for the three spatial planes I1, I2 and I3

respectively. However, the model is not complete for the color model. We model Z as a com‐
pound MRF, where the spatial interactions of individual color planes are taken care together
with the inter color plane interactions of pixels. The inter color plane interactions of pixels of
one plane with the other is shown in Fig.1(a). For the sake of illustration, Fig.1(b) shows in‐
teraction of (i, j) {th} pixel of I2 plane with the pixels of I1 plane with the first order neighbour‐
hood structure in the inter color plane direction. If this inter color plane interactions need to
modeled with the MRF prior, we can express

P(Z I2

i , j
= z I2

i , j / Z I1

k ,l
z I1

k ,l
, (k , l) ∈ I1) =

P(Z I2

i , j
= z I2

i , j / Z I1

k ,l
= z I1

k ,l
, (k , l) ≠ (i, j), (k , l) ∈ η I1

i , j
)

Figure 2. (a) I1, I2, I3 Plane Interaction (b) Interaction of one pixel of I1 –plane with I2 -plane.
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Let z denote the labels of pixels taking care of all three color planes. In otherwords, z de‐
notes the labels for pixels of the color image. For example, z{i, j} corresponds to the (i, j) th

pixel label consisting of three color components. The prior probability of z has been contrib‐
uted by the intra color plane interactions and inter color plane interactions of pixels. hence,
the prior model of z consists of the clique potential functions Vcs(z) and Vct(z) corresponding
to intra color plane interactions and inter color plane interactions respectively. The vertical
and horizontal line fields for different color planes (k=1, 2, 3) are denoted as v{k} and h{k} re‐
spectively. The horizontal and vertical line fields are defined as follows. Let f v(z k

i , j
, z k

i , j−1)
for the kth color plane be defined as f v(z k

i , j
, z k i, j −1)= | z k

i , j
− z k

i−1, j |
f h (z k

i , j
, z k

i , j−1)> threshold . Vertical line field for each plane is set i.e.

v{i, j} {k}=1 for k=1, 2, 3, if f v(z k
i , j

, z k
i , j−1)> threshold , else v {i, j} {k}=0. Similarly, in case of hori‐

zontal line field let f h (z k
i−1, j

, z k
i , j) be defined as f h (z k

i , j
, z k i, j −1)= | z k

i , j
− z k

i−1, j | .

Horizontal line field for k th plane is set, i.e. h {i, j} {k} =1 for k=1, 2, 3, if else h {i, j} {k} =1. Since the
compound MRF model takes care of intra color plane as well as inter color plane interac‐
tions the prior probability distribution is given by (10), where the energy function can be ex‐
pressed as,

( ) ( ) ( ), , ,s tU z U z U zq q q= + (12)

Where,

( ) ( )
,

, ,
ss c

i j
U z V zq q=å (13)

( ) ( )
,

, ,
tt c

i j
U z V zq q=å (14)

Here, Us(z, θ) and Ut(z, θ) refers to the energy function of intra-color-plane and inter-color-
plane respectively. Vcs (zi, j) corresponds to the intra-color-plane pixels and Vct (zi, j) corre‐
sponds to inter-color-plane pixels. Let hs

k for k=1, 2, 3 denote the horizontal line field for
each color plane in intra-color-plane and ht

k for k=1, 2, 3 denote the vertical line fields for
inter-color-plane directions. Thus the compound MRF model will have the energy function
given by (12). Equation (13) can be written as,

( ) ( ) ( ) ( ) ( )
3 2 2

, , , 1 , , 1, ,
1

, ,

1 1
s

k k k k k k k
c i j i j i j i j i j i j i j

k
k

i j i j

V z z z v z z h

v h

a

b

- -
=

é ù= - - + - -ê úë û
é ù+ +ë û

å
(15)
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Here, z1, z2, z3 correspond to I1, I2, I3 planes respectively. The equation (14) can be written as,

Vct
(zi , j)=α 1 (z 1

i , j
− z 2

i , j−1)2(1−v 1
i , j) + (z 1

i , j
− z 2

i , j−1)2(1−h 1
i , j) + β 1 v 1

i , j
+ h 1

i , j

+α 2 (z 2
i , j
− z 3

i , j−1)2(1−v 2
i , j) + (z 2

i , j
− z 3

i , j−1)2(1−h 2
i , j) + β 2 v 2

i , j
+ h 2

i , j

+α 3 (z 3
i , j
− z 1

i , j−1)2(1−v 3
i , j) + (z 3

i , j
− z 1

i , j−1)2(1−h 3
i , j) + β 3 v 3

i , j
+ h 3

i , j

(16)

Where z1 denotes the interaction between I1-I2 color planes, z2 denotes the interaction be‐
tween I2-I3 color planes and z3 denotes the interaction between I3-I1 color planes respectively.
Here we have assumed, α1 =α2 =α3 =α and β1 =β2 =β3 = β. The α, β T  is the set of unknown
parameter vector that are selected on ad hoc basis. Since the line fields correspond to the
edge pixels and in turn the boundary of a given segment. The similarity measure in case of
boundary pixels for k=1, 2, 3 is not required and hence for boundary pixels, i.e. when hi, j=1
and vi, j=1, for k=1, 2, 3 the clique potential function of (16) consists of only the penalty func‐
tion. Therefore the boundary pixels should not participate in the formation of regions with
similarity measure.

4. Constrained Markov Random Field (MRF) model

In probability theory, a martingale is a stochastic process (i.e., a sequence of random varia‐
bles) such that the conditional expected value of an observation at some time t, given all the
observations up to some earlier time s, is equal to the observation at that earlier time s. Pre‐
cise definitions are given below.

Originally, martingale referred to a class of betting strategies popular during 18th century,
in France. The simplest of these strategies was designed for a game in which the gambler
wins his stake if a coin comes up heads and loses it if the coin comes up tails. The strategy
had the gambler double his bet after every loss, so that the first win would recover all previ‐
ous losses plus win a profit equal to the original stake. Since as a gambler's wealth and avail‐
able time jointly approach infinity his probability of eventually flipping heads approaches 1.
The martingale betting strategy was seen as a sure thing by those who practiced it. Of course
in reality the exponential growth of the bets would eventually bankrupt those foolish
enough to use the martingale for a long time. The concept of martingale in probability theo‐
ry was introduced by Paul Pierre LÃ©vy, and much of the original development of the theo‐
ry was done by Joseph Leo Doob. Part of the motivation for that work was to show the
impossibility of successful betting strategies.

A discrete-time martingale is a discrete-time stochastic process (i.e., a sequence of random
variables X1, X2, X3 that satisfies for all n,

E (| Xn |)<∞
E (Xn+1 / X1, X2, X3, ..., Xn) = Xn
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i.e., the conditional expected value of the next observation, given all of the past bservations,
is equal to the last observation.

Capturing the salient spatial properties of an image lead to the development of image mod‐
els [3]. Though the MRF model takes into account the local spatial interactions, it has its lim‐
itations in modeling natural scenes of distinct regions. In order to incorporate a stronger
local dependence, we constrain this model based on the notion of martingale.The motivation
behind the new model is as follows.

MRF model takes care of the local spatial interactions, nevertheless it has limitation in mod‐
eling natural scenes. In the following we propose new model with a view to take care of in‐
tra as well as inter plane interactions. In this research work, we employed the notion of
martingale to reinforce the local dependence. Let Z (i), i =1, 2, ......n be a martingale se‐
quence, namely for all i =1, 2, ......n E |Z (n)| <∞

and E Z (n + 1) / Z (1), .....Z (n) =Z (n). Now, let Z1, Z2, .....Zn be the random variables associ‐

ated with the image of size n = N 2 and G is the predefined number of class labels. Therefore,
E Zi , j / Zk ,l , k , l ≠ i, j =Zi−1, j for any k , l∈ηi , j,  where ηi , j is the neighborhood of i, j. Con‐
sider,

,

, , , , , , ,| , , , | , , ,
i j

i j k l i j i j i j k l k l
z L

E Z Z k l i j z P Z z Z z k l i j
Î

é ù é ù¹ = = = ¹ë û ë ûå (17)

Assuming further that Z is a Markov process, we have
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Since Z is a MRF,

( )
( )

, ,

, , ,| , , ,
i j i j

i j k l i j
z L z L

P Z z
E Z Z k l i j z

P Z zÎ Î

=
é ù¹ =ë û =å å (19)

Since Zi, j is a martingle sequence E Zi , j |Zk ,l , k , l ≠ i, j = zk ,l ∀ k , l ∈ ηi , j

, ,

( )

, , , ( ), ,
i j i j

U z

k l i j i j U z
z L z L

ez k l z
e

h
-

-
Î Î

Î = å å (20)
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Considering first order neighbourhood and choosing one of the neighbourhood pixels for
example zi-1, j, equation(20) can be expressed as

zi−1, j = ∑
zi , j∈L

zi , j
e −U (z)

∑zi , j∈L e −U (z)

Instead of taking a given pixel from the neighbourhood zi-1, j, we take the average of the
neighborhood pixels. The a priori model of Z takes care of this constraint and the U(Z) is
modified as (for∀ (i, j))

, ,

( )
2

, , , ( )
,

( ) ( ) { }
avg

i j i j

U z

i j c i j i j U z
i j z L z L

eU z U z z z
e

l
-

-
Î Î

= + -å å å (21)

Where zi , javg
= ∑

zi , j∈L
zi , j

e −U (z)

∑zi , j∈L e −U (z)  and λc is the constrained model parameter. The energy

function consists of two terms

1 2 3 1 2 3( ) ( , , ) ( , , )
in ir

c s s s c t t t
c C c C

U z V z z z V z z z
Î Î

= +å å (22)

Where Vc(zs
1, zs

2, zs
3) and Vc(zt

1, zt
2, zt

3) are given by (15) and (16) respectively.

4.1. Constrained Compound Markov Random Field (CCMRF) model

The notions of the Constrained model has been fused with the notion of Compound Model
to develop a new model known as Constrained Compound Model [10].

The model is given by

( ) ( )
( )

( )
,

,
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Where,
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(24)
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Where Usc denote the energy function corresponding to intra color plane interactions and

Vcs(zi, j) is defined by (15). Where, Zi , javg
= ∑

zi , j∈L
zi , j

e
−U (zi , j )

∑zi , j∈L e
−U (zi , j )  and λc is the constrained mod‐

el parameter. The energy function taking care of both intra-color-plane and inter-color-plane
interactions with intra plane constraints is given by

( ) ( ) ( ), ,, ,
c cs i j t i jU Z U z U zq q= + (25)

Where Usc
(zi , j, θ) is defined by (24) and Utc

(zi , j, θ) is defined by (14).

Vcs
(zi , j) and Vct

(zi , j) are given by (15) and (16) respectively.

5. Unsupervised framework

In unsupervised scheme, the MAP estimates of the labels and the estimates of the model pa‐
rameters are carried out concurrently. Thus, an estimation strategy need to be developed,
which using the observed image, X, will yield an optimal pair (Zopt, θopt). The following joint
optimality criterion is considered,

( ) ( ),, arg max ,opt opt
zz P Z z X xqq q= = = (26)

The estimated pair satisfying (26) is the global optima of P(Z=z/X=x, θ) with respect to Z and
θ. Since both the entities Z and θ are unknown, and interdependent the problem is a very
hard problem. Therefore, it is necessary to opt for strategies for suboptimal solution. In (26),
z, θcould be viewed as a set of parameter of the given function P(Z=z/X=x, θ). For such kind
of problems in deterministic framework, Wendell and Horter have proposed an alternate
approach that would yield suboptimal solutions instead of optimal solution. Their approach
is based on splitting the variables followed by recursively estimating the parameters. The fi‐
nal estimate in this process is called as the partial optimal solution. In our case, in stochastic
framework, we in the same spirit venture to split the original problem into estimation of la‐
bels (z) and parameters estimate θ to obtain the partial optimal solutions. The splitting of
the variables can be expressed as follows

( ) ( )* *arg max ,zz P Z z X x q= = = (27)

( ) ( )* * *arg max .P Z z X xqq q= = = (28)
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These partial optimal solutions Z *and θ* are not global maxima, rather they are almost al‐
ways local optimal solutions. But with θ=θ*, the estimate z* is global optimal satisfying
equation (27) and analogously for z=z*, θ* is global optimal satisfying equation (28). Since
neither θ* nor z* is known, a recursive scheme is adopted where the model parameter esti‐

mation and segmentation is alternated. Let at the kth iteration θ k = α k , φ k T  be the estimate
of model parameters and zk be the estimate of the labels of the observed image. We adopt
the following recursion

( ) ( )1 arg max .k k
zz P Z z X xq+ = = = (29)

( ) ( )1 1 *arg max ,k kP Z z X xqq q+ += = = (30)

The first problem of equation (29) is solved using Bayesian approach [2]. The optimal value
of θ k is obtained by the proposed Homotopy Continuation method [6]. The MAP estimates
are obtained by the proposed hybrid algorithm. One estimate of zk and θk constitute one
combined iteration. this recursion is continued for finite number of steps to obtain zk and θk.
Thus, the partial optimal solutions are obtained.

6. Image label estimation

The segmentation problem is cast as the pixel labeling problem. Each pixel can assume a la‐
bel from the set of labels {0 − L}. In a given image of size L = M1 x M2, let Zi, j denote the
random variable for (i, j)th pixel, ∀ (i, j) є L = M1 x M2. Z denotes the label process and z
denotes a realization of the process. The label estimates ẑ is obtained by maximizing the
posterior probability P(Z = z | X = x, θ). Thus, the optimality criterion can be expressed as
follows,

( )ˆˆ arg max .zz P Z z X xq= = = (31)

where, θ denotes the associated parameter vector of the double MRF model Z. Since z is un‐
known the above equation can not be computed. So, by using Baye’s theorem, hence (31)
can be expre ssed as

( ) ( )
( )

,
ˆ arg maxz

P X x Z z P Z z
z

P X x

q

q

= = =
=

=
(32)
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The observed image X is given and hence the denominator P(X = x | θ) of (32) is a constant
quantity. P(Z = z) is the a priori probability distribution of the labels. The degradation proc‐
ess is assumed to be Gaussian and hence P(X = x | Z = z, θ) of (32) can be written as
P( X = x | Z = z, θ ) = P(X = z + w | Z , θ) = P(W = x − z | Z , θ). Since, W is a Gaussian
process, and there are three spectral components present in a color image, we have,

( )
( )

( ) ( )1

1,
2 det

1
2

n

T

P W x z Z
K

x z K x z

q
p

-

= - =
é ùë û

- - -

(33)

Where K is the covariance matrix. Hence, this minimization can be expressed as,

( ) ( )( ) ( ) ( )
2

3

, ,2
, 1

ˆ arg min
2 s t

i i

k k
z c i j c i j

i j k

x z
z v z v z

s=

-
= + +åå (34)

Vcs
(zi , j) and Vct

(zi , j) are given by (15) and (16) respectively. Solving (34) yields the MAP esti‐

mates of the image labels and hence segmentation. The color image has three spectral com‐
ponents xk, zk, k=1, 2, 3, Vc is the clique potential function for all the three spectral
components.

7. Model parameter estimation

We estimate the a priori model parameter using the ground truth image z. The associated
MRF parameters of this ground truth image is θ. We also assume the number of labels asso‐
ciated with the original image to be known. The parameter estimation problem is formulat‐
ed using Maximum Likelihood criterion. Here the image label available at the (k+1)th

iteration is used to estimate θ at (k+1)th iteration. Therefore, the problem can be stated as the
following

1 1arg max ( / )k kP Z zj q+ += = (35)

Since, Z is a MRF, we have,

1exp( ( , ))1 arg max
exp( ( , ))

kU zk
U

qj
z qq

z
å

+-+ =
- (36)
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where ζ ranges over all realizations of the image z. Because of the denominator of (36), compu‐
tation of the joint probability P(Z = z k +1 /θ) is extremely difficult task. We maximize the pseu‐
dolikelihood function P̂(Z = z k +1 /θ) instead of the likelihood function P(Z = z /θ) where

1
, , ,,( , ) , )1 1( / ( / ), ,( , )

k
m n m n i jZ z m nk kP Z z P Z zi j i ji j L

h q q+= Î =Õ + += =
Î

(37)

From the definition of marginal conditional probability, we can write

1
, , ,( , ) ( , ), ( , ) , )1( /, ,( , )

1( / )
( / )

,

k
k l k lZ z k l i j i j LkP Z zi j i ji j L

kP Z z
P X x

z Mi j

q

q
q

+= ¹ " ÎÕ

=
å

+=
Î

+=
=

Î

(38)

Because of MRF assumption,

1
, , ,, , , )1( /, ,( , )

1exp( ( , ))

1( , )
,

k
m n m n i jZ z m nkP Z zi j i ji j L

kV zcc C
kV zcz M c Ci j

h q

q

q

+= ÎÕ

å

=
å å

+=
Î

+-
Î

+

Î Î

(39)

Substituting equation (39) in (37) we have

1ˆ( / )
1exp( ( , ))

1exp( ( , ))
,

kP Z z
kV zcc C
kV zcz Mi j

q

q

q

+=

å

»
å

+-
Î

+

Î

(40)

Therefore, the maximization problem (41) reduces to

1

( , )

ˆarg max ( / )

arg max

1exp( ( , ))

1exp( ( , ))
,

k

i j L

P Z z
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q
q

q

q

+

Î

=

å

=
å å
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Î

+-
Î Î

Õ (41)
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In (41), the summation is over all possible labels M. (41) is highly nonlinear in nature and no
a priori knowledge of the solution is available. Solving the resulting non-linear equations is
hard and hence we developed a globally convergent based Homotopy Continuation meth‐
od. We carry out the maximization process and obtain the estimate of parameter vector θ
with the help of homotopy continuation method based algorithm.

7.1. Salient steps of the unsupervised algorithm

1. Initialize parameter vector as θ 0, pixel label estimates z0 for k=0, 1, 2, ..., N do

2. Using θ k , observed image x and initial segmented image zk, obtain the MAP estimate of
the labels ẑk +1

3. With ẑk +1, obtain the MCPL estimate of the parameter vector θ̂k +1, using homotopy con‐
tinuation based algorithm

4. Compare θ̂k +1with the previous estimate of θ̂k , if | θ̂k +1− θ̂k | < threshold , set θ k +1 =θ kgo
to step 2 else go to step 5

5. Set estimate of parameter vector θ * = θ̂k +1

6. Estimate z * (segmented image) using θ *, ẑk +1and observed image x

8. Parameter estimation using homotopy continuation method

8.1. Homotopy continuation method

Often, a wide variety of practical problems reduces to finding solution to a system of non-
linear equations. The problem becomes difficult when we have little knowledge about the
solutions of the system. In such situations, the popular Newton algorithm may fail to con‐
verge to a solution. Such examples can be found in [19]. Therefore, we need a method
which, irrespective of the starting point always converges to a solution of the given system
of equations. Homotopy continuation methods under some conditions always converges to
a solution with probability one. Such methods are called globally convergent homotopy con‐
tinuation methods [14]. The homotopy function is defined as follows :Let X, Y be two topo‐
logical spaces and I be the unit interval λ / 0 ≤ λ ≤ 1. The two maps f, g be maps from a space
X to a space Y f , g : X → Y , then f is said to be homotopic to g if there exists a map
H : X → Y such that H(x, 0) = f(x) and H(x, 1) = g(x) for x ∈ 0, 1 , such a map H is called a
homotopy from f to g. In the above definition, H represents a continuous deformation of the
map f to g as the parameter λ is varied from 0 to 1. There is no unique homotopy map that
will continuously deform from a trivial map to any map. Depending upon the problem at
hand the path has to be accurately tracked and hence, a suitable homotopy function has to
be chosen for the existence of a path leading to the solution. The commonly used Homotopy
maps are (i) Linear Homtopy (ii) Newton Homotopy (iii) Fixed Point Homotopy.
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It is clear from Section 7 that the parameter estimation problem has been reduced to maximi‐
zation of (41) with respect to θ . Towards this end let

1ˆ( ) {log[ ( / , )]}kf P X x Y yq q
q

+¶
= = =
¶

(42)

Now the homotopy method is employed to solve f (θ) = 0. In the following, we develop a
general framework for solving f (θ) = 0 using homotopy continuation method where θ is
the unknown parameter vector to be determined.

In the continuation method we need to trace the homotopy path from a solution of a known
system to that of the desired solution. In this regard, we have considered the fixed point ho‐
motopy map [14] which offers the advantage of arbitrary starting point for the path. This
fixed point map is given by

( , , ) ( ) (1 )( )h q f qq l l q l q= + - - (43)

where 0 ≤ λ ≤ 1 and q is an arbitrary starting point. Here the predictor-corrector method is
employed to track the path defined by the homotopy in (43). The procedure can be briefly
outlined as follows:

Let (θ k , λ k , θ k−1) be a point that satisfies (43). Therefore, the point considered is on the
path. Tracking the path involves computing the adjacent point on the path. This is deter‐
mined in the following way. Increment λ k  by some small value Δλ thus giving the next
point λ k +1 = λ k + Δλ and evaluate equation (43) at (θ k , λ k +1 , θ k−1). If the value of the map
h (θ k , λ k +1 , θ k−1) is not equal to zero, then the point (θ k , λ k +1 , θ k−1) is not on the path.
Sinceh (θ k , λ k +1 , θ k−1) ≠ 0, we try to obtain an estimate of θ k , say θ̂k  corresponding to
λ k +1  such that h (θ k , λ k +1 , θ k−1) ≈ 0. To achieve this one could use Newton's algorithm,
namely,

1 1 1 1 1
ˆ1

ˆ ˆ ˆ ˆ[ ( , , )] ( , , )k k k k k k k k
i i i iJ h hqq q q l q q l q- + - + -
+ = - (44)

Where the superscript i denotes the ith Newton iteration and is the inverse of the Jacobian of
h with respect to the coefficient of the parameter vector θ . But if θ̂0k  is too far from θ̂k  the

value which makes, h (θ̂k , λ k +1 , θ k−1) ≈ 0 then (44) may not converge. To improve the con‐
vergence of (44), we select the initial point as θ̂0k = θ k . A further improvement in the con‐
vergence is obtained by considering

1 1 1 1 1
ˆ0̂

ˆ [ ( , , )] ( , , )k k k k k k k khJ h hqq q l q l q q l q
l

- + - + -¶
= -D

¶
(45)
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The derivation of (45) is analogous to the derivation of Stonick and Alexander [15] for our
homotopy map (43). Equation (45) corresponds to the prediction of the next point by taking
a step in the direction of the path's slope. For the fixed point homotopy map considered, (45)
becomes

0 2

1
1 1

ˆ {
1 ( ) (1 ( ))

( )
[ ] }{ ( ) ( )}
( ) 1 ( )

k k
k k

k
k k k

k k

I I

F I fq

q q l
l l l l

q
q q q

l l l l

-
- -

= -D -
- + D - + D

+ - -
+ D - + D

(46)

Where I is the identity matrix. The intermediate steps for arriving at (46) is given in [16] and
[17]. If θ̂0k  estimated by (45) is not on the path then it is taken as the initial point in the cor‐
rection step (44). Otherwise θ̂0k  is considered as the next point on the path. Suppose

| θ̂M +1k − θ̂M k | ≤ γ then we set θ̂M k = θ̂k = θk +1.

8.2. Homotopy continuation algorithm

Initialize: (θ =θ 0 and λ =0)

do{

Increment λ k +1 = λ k + Δλ

Update θ k  to θ̂0k  using equation (38)

if ()

else

take θ0k  the initial point for Newton algorithm

Update:

θ̂ i k to θ̂k +1k  using (40)

if ()

else go to update: }

(Until λ = 1).

9. Results and discussions

In simulation, two images with weak edges and two images having both weak as well as
strong edges have been considered. The first original image, a liver image with ill defined
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edges, is shown in Fig. 3(a). In order to compute the percentage of misclassification error,
the Ground Truth image, as shown in Fig. 3(b), has been constructed manually. The estimat‐
ed MRF model parameters are, α= 0.005601, β = 2.34 and σ = 0.55. However σ is chosen by
trial and error and is fixed at 0.5. The Percentage of Misclassification Error (PME) with re‐
spect to Ground Truth image is defined as PME = {number of misclassified pixels in all the
classes}/{total number of pixels of the image}. The MAP estimates in each recursion has been
obtained by our proposed hybrid algorithm [10]. The results obtained by basic MRF model
is shown in Fig. 3(c), where it is observed that one of the weaker edge could be preserved
while the ill defined edge adjacent to it is completely lost. In case of the CMRF model, some
portions could be sharper but the adjacent ill defined edge could not be recovered as shown
in Fig. 3(d). However, as seen from Fig. 3(e), the use of the proposed CCMRF model could
preserve well the weak edge as well as the adjacent ill defined edges. In case of Yu 's [9] ap‐
proach, the inside weak edge could not be preserved even though the outer edge could be
preserved. The adjacent ill defined edge is completely lost as seen in Fig. 3(f). Thus, the pro‐
posed CCMRF model with bi-level line field with Gaussain weighted penalty function could
preserve well the ill defined edges together with strong edges.

Figure 3. (a) Liver Abscess image (468x345) (b) Ground Truth (c) MRF optimized using Hybrid (d) CMRF optimized us‐
ing Hybrid (e) CCMRF optimized using Hybrid (f) Clausi’s result.

Fig.4(a) shows a cell image where the outer boundary of the cell is a strong edge while the
inner portion of the cell contains weak edge or poorly defined edge. In order to compute the
classification error, the corresponding ground truth image is manually constructed and is
shown in Fig.4(b) and Fig.4(c) shows the result obtained with MRF model and it may be ob‐
served that the strong edges could be preserved but the weak edges could not be preserved.
The poorly defined edges improved with CMRF model as shown in Fig.4(d). With CCMRF
model, as observed from Fig.4(e), the outer edges of the cells could be preserved and the
edges inside the different cells also have been well defined. The threshold considered for
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weak and strong edges are 0.91 and 0.25 respectively. The degradation process parameter is
chosen to be 0.5 and the value k of the edge penalty function is chosen to be 0.2. This has
also reflected in the misclassification error that is the PME is 22.72 for MRF model which re‐
duced to 14.86 for CMRF model and further reduced to 3.11 for CCMRF model. As seen
from Fig.4(f) Yu 's method preserved both weak and strong edges. The PME for Yu 's meth‐
od is 6.21. It is found that the CCMRF model with bi-level line field proved to be the most
effective among other methods.

Figure 4. (a) Cell image (491x370) (b) Ground Truth (c) MRF optimized using Hybrid (d) CMRF optimized using Hybrid
(e) CCMRF optimized using Hybrid (f) Clausi’s result.

In order to demonstrate the unifying modeling property of the CMRF and CCMRF model, a
third example as shown in Fig. 5(a) is considered where the background has texture like at‐
tributes. The estimated MRF model parameters are α = 0.01842, β= 2.79 and σ = 0.42. As ob‐
served from Fig.5(e) that the CCMRF model could segment the image and preserved many
poorly defined edges. This observation is absent in case of use of the MRF and CMRF mod‐
el. Use of CCMRF model could preseve the sharp features while Yu 's method could not pre‐
seve all the weak edges. This is observed from Fig. 5(f). The percentage of misclassification
error also reflect the observation. Thus, in case of all the three examples, the use of CCMRF
model could segment the image and preserve both the strong as well as weak edges. This
proposed model could perform better than that of Yu 's approach [9] in the context of weak
edge preservation and hence misclassfication error.
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Figure 5. (a) Hand Ring (Indoor) image (303x243) (b) Ground Truth (c) MRF optimized using Hybrid (d) CMRF optimize
dusing Hybrid (e) CCMRF optimize dusing Hybrid (f) Clausi’sresult.

Figure 6. (a) MANASA SOROVER (Remote Sensing) image (500x500) (b) Ground Truth (c) MRF optimized using Hybrid
(d) CMRF optimized using Hybrid (e) CCMRF optimized using Hybrid (f) Clausi’s result.

Similar observations have also been made in case of the Manasa Sorover image as shown in
Fig.6(a). As observed from Fig.6(a) there are many weak edges to be preserved. In this case,
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the CCMRF model with bi-level linefield could preserve many weak edges together with the
strong edges. This may be seen from Fig.6(e) and it can be observed from Fig.6(d) that many
weak edges have been preserved even using CCMRF model. Thus, in this example the per‐
formance of CCMRF model is found to be better than that of CMRF model in the context of
misclassification error.
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Chapter 5

Cognitive and Statistical Pattern Recognition Applied
in Color and Texture Segmentation for Natural Scenes
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1. Introduction

In this approach, cognitive and statistical classifiers were implemented in order to verify the
estimated and chosen regions on unstructured environments images. As inspection of crops
for natural scenes demands and requires complex analysis of image processing and segmen‐
tation algorithms, since these computational methods evaluate and predict environment
physical characteristics, such as color elements, complex objects composition, shadows,
brightness and inhomogeneous region colors for texture, JSEG segmentation algorithm was
approached to segment these ones, and ANN and Bayes recognition models to classify im‐
ages into predetermined classes (e.g. fruits, plants and general crops). The intended ap‐
proach to segment classification deploys a customized MLP topology to classify and
characterize the segments, which deals with a supervised learning by error correction –
propagation of pattern inputs with changes in synaptic weights in a cyclic processing, with
accurate recognition as well as easy parameter adjustment, as an enhancement of iRPROP
algorithm (improved resilient back-propagation) (Igel and Hüsken, 2003) derived from Back-
propagation algorithm, which has a faster identification mapping process, that verifies what
region maps have similar matches through the explored environment. Bayes statistical mod‐
els had the addiction of process variable as set parameters of predictive error correction.

To carry through this task, a feature vector is necessary for color channels histograms (layers
of primary color in a digital image with a counting graph that measures how many pixels
are at each level between black and white). After training process, the mean squared error

© 2012 Cássio Lulio et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



(MSE), denotes the best results achieved by segment classification to create the image-class
map, which represents the segments into distinct feature vectors. Furthermore, a language
dictionary is used for the expansion on main results, which semantic regions and negation
detection are applied as data mining process with cognitive and statistical classifiers.

2. JSEG image segmentation

Color images with homogeneous regions are segmented with an algorithm to generate clus‐
ters in the color space/class (different measures classes in spectral distribution, with distinct
intensity of visible electro-magnetic radiation at many discrete wavelengths) (Deng et al,
1999a). One way to segment images with textures is to consider the spatial arrangement of
pixels using a region-growing technique whereby a homogeneity mode is defined with pix‐
els grouped in the segmented region. Furthermore, in order to segment texture images one
must consider different scales of images.

The JSEG algorithm segments images of natural scenes properly, without manual parameter
adjustment for each image and simplifies texture and color. Segmentation with this algo‐
rithm passes through three stages, namely color space quantization (number reduction proc‐
ess of distinct colors in a given image), hit rate regions and similar color regions merging.

In the first stage, the color space is quantized with little perceptual degradation by using the
quantization algorithm (Deng et al, 1999b) with minimum coloring. Each color is associated
with a class. The original image pixels are replaced by classes to form the class maps in the
next stage. Before performing the hit rate regions, the J-image - a class map for each win‐
dowed color region, whose positive and negative values represent the edges and textures of
the processing image - must be created with pixel values used as a similarity algorithm for
the hit rate region. These values are called „J-values“ and are calculated from a window
placed on the quantized image, where the J-value belongs.

Figure 1. JSEG image segmentation steps.
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2.1. Segmentation algorithm evaluation

Natural scenes present a 24-bit chromatic resolution color image, which is coarsely quan‐
tized preserving its major quality. The main idea for a good segmentation criterion is to ex‐
tract representative colors differentiating neighboring regions in the acquired image, as an
unsupervised method.

Therewith, the color quantization using peer group filtering (Deng et al., 2001) is applied
through perceptual weighting on individual pixels, to smooth the image and remove the ex‐
isting noise. Then, new values indicating the smoothness of the local areas are obtained, and
a weight is assigned to each pixel, prioritizing textured areas to smooth areas. These areas
are identified with a quantization vector to the pixel colors, based on General Lloyd Algo‐
rithm (GLA) (Gersho and Gray, 1999), which the perceptually uniform L*u*v color space is
adopted, presenting the overall distortion D:

2( ) ( ) ( )i i i
i i n

D D v n x n c x n C= = - ® Îå å å (1)

And it is derived for:

( ) ( ) ( )
( )i i

v n x nc x n C
v n

å= ® Î
å (2)

The parameters: ci is the centroid of cluster Ci, x(n) and v(n) are the color vector and the per‐
ceptual weight for pixel n. Di is the total distortion for Ci.

With the centroid value, as denoted by Equation (2) - after the vector quantization and
merged clusters, pixels with the same color have two or more clusters, affected by GLA
global distortion. For merging close clusters with minimum distance between preset thresh‐
olds for two centroids, an agglomerative clustering algorithm is performed on ci (Duda and
Hart, 1970), as the quantization parameter needed for spatial distribution.

After clustering merging for color quantization, a label is assigned for each quantized color,
representing a color class for image pixels quantized to the same color. The image pixel col‐
ors are replaced by their corresponding color class labels, creating a class-map.

In order to calculate the J-value, Z is defined as the set of all points of quantized image, then
z = (x, y) with z ∈ Z and being m the average in all Z elements. C is the number of classes
obtained in the quantization. Then Z is classified into C classes, Zi are the elements of Z be‐
longing to class i, where i=1,...,C, and mi are the element averages in Zi.

1
i

z Zi
m z

N Î
= å (3)

The J-value is as follows:
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The parameter ST represents the sum of quantized image points within the average in all Z
elements. Thereby, the relation between SB and SW, denotes the measures of distances of this
class relation, for arbitrary nonlinear class distributions. J for higher values indicates an in‐
creasing distance between the classes and points for each other, considering images with ho‐
mogeneous color regions. The distance and consequently, the J value, decrease for images
with uniformly color classes.

Each segmented region could be recalculated, instead of the entire class-map, with new pa‐
rameters adjustment for J̄  average. JK represents J calculated over region k, Mk is the number
of points in region k, N is the total number of points in the class-map, with all regions in
class-map summation.

1
k k

k
J M J

N
= å (7)

For a fixed number of regions, a criterion for J̄  is intended for lower values.

2.2. Spatial segmentation technique

The global minimization of J̄  is not practical, if not applied to a local area of the class-map.
Therefore, the idea of J-image is the generation of a gray-scale image whose pixel values are
the J values calculated over local windows centered on these pixels. With a higher value for
J-image, the pixel should be near region boundaries.

Expected local windows dimensions determines the size of image regions, for intensity and
color edges in smaller sizes, and the opposite occurs detecting texture boundaries.

Using a region-growing method to segment the image, this one is considered initially as one
single region. The algorithm for spatial segmentation starts segment all the regions in the
image at an initial large scale until the minimum specified scale is reached. This final scale is
settled manually for the appropriate image size. The initial scale 1 corresponds to 64x64 im‐
age size, scale 2 to 128x128 image size, scale 3 to 256x256 image size, with due proportion for
increasing scales and the double image size.
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Below, the spatial segmentation algorithm is structured in flow steps.

Figure 2. Sequence for spatial segmentation algorithm.

3. Image processing (spatial distribution and objects quantification)

The sequential images evince not only the color quantization (spatial distributions forming a
map of classes), but also the space segmentation (J-image representing edges and regions of
textured side).

Several window sizes are used by J-values: the largest detects the region boundaries by re‐
ferring to texture parameters; the lowest detects changes in color and/or intensity of light.
Each window size is associated with a scale image analysis. The concept of J-image, together
with different scales, allows the segmentation of regions by referring to texture parameters.
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Regions with the lowest values of J-image are called valleys. The lowest values are applied
with a heuristic algorithm. Thus, it is possible to determine the starting point of efficient
growth, which depends on the addition of similar valleys. The algorithm ends when there
are spare pixels to be added to those regions.

Figure 3. a) Original images; (b) Color quantization (map of classes); (c) J-image representing edges and regions of
textured side (Spatial distributions).

It was observed that the oranges represent the largest number of image pixels, given its
characteristics of high contrast with other objects on the scene.

Fig. 3, above, shows three types of scenes in orchards. The first identifies the largest part of
the tree. In this category, the quantization threshold was adjusted to higher values for the
fusion of regions with same color tone between branches, leaves and ground would be
avoided. The second scene denotes the regions' set details in orchards, excluding darker re‐
gions. Not only irregularities of each leaf are segmented, as well as abnormalities of color
tones in fruit itself, allowing later analysis of disease characteristics. The third category iden‐
tifies most of the trees, but with higher incidence of top and bottom regions.

4. Artificial Neural Networks (ANN) – MLP customized algorithm

It is fundamental that an ANN-based classification method associated with a statistical pat‐
tern recognition be used. Multi-Layer Perceptron (MLP) (Haykin, 1999; Haykin, 2008) is suita‐
ble for default ANN topology to be implemented through a customized back-propagation
algorithm for complex patterns (Costa and Cesar Junior, 2001).

The most appropriate segment and topology classifications are those using vectors extracted
from HSV color space (Hue, Saturation, Value), matching RGB color space (Red, Green,
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Blue) components. Also, the network with less MSE in the neurons to color space proportion
is used to classify the entities.

Figure 4. ANN schematic topology for fruits with three classes.

Derived from back-propagation, the iRPROP algorithm (improved resilient back-propaga‐
tion) (Lulio, 2010) is both fast and accurate, with easy parameter adjustment. It features an
Octave (Eaton, 2006) module which was adopted for the purposes of this work and it is clas‐
sified with HSV (H – hue, S – saturation, V – value) color space channels histograms of 256
categories (32, 64,128 and 256 neurons in a hidden layer training for each color space chan‐
nel: H, HS, and HSV). The output layer has three neurons, each of them having a predeter‐
mined class.

Figure 5. MSE 50% validation tests for RGB.
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The charts below (Figures 5, 6, 7, 8) denote the ratio of mean square error (MSE) and amount
of times to obtain the best performance index during the validation data towards the train‐
ing and test sets.

All ANN-based topologies are trained with a threshold lower than 0.0001 mean squared er‐
rors (MSE), the synaptic neurons weights are initiated with random values and the other al‐
gorithm parameters were set with Fast Artificial Neural Network (FANN) library (Nissen,
2006) for Matlab (Mathworks Inc.) platform, and also its Neural Network toolbox. The most
appropriate segment and topology classifications are those using vectors extracted from
HSV color space. Also, a network with less MSE in the H-64 was used so as to classify the
planting area; for class navigable area (soil), HSV-256 was chosen; as for the class sky, the
HS-32.

Figure 6. MSE 100% validation tests for RGB.

Figures 9 and 10 denote the regression for target-outputs of ANN classifier, for RGB and
HSV classes. The higher the concentration of data at the intersection of bias and Y = T (equal
to the output sampling period), the lower the linear regression of data is classified, based on
confusion matrices for each set of dimensions.

The response times are given for combinations of training, testing, validation and all data
sets.
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Figure 7. MSE 50% validation tests for HSV.

Figure 8. MSE 100% validation tests for HSV.
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Figure 9. MSE 50% (left) and 100% (right) validation tests for RGB.

5. Statistical pattern recognition

Statistical methods are employed as a combination of results with ANN, showing how accu‐
racy in non-linear features vectors can be best applied in a MLP algorithm with a statistical
improvement, which processing speed is essentially important, for pattern classification.
Bayes Theorem and Naive Bayes (Comaniciu and Meer, 1997) both use a technique for itera‐
tions inspection, namely MCA (Main Component Analysis), which uses a linear transforma‐
tion that minimizes co-variance while it maximizes variance. Features found through this
transformation are totally uncorrelated, so the redundancy between them is avoided. Thus,
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the components (features) represent the key information contained in data, reducing the
number of dimensions. Therefore, RGB space color is used to compare the total number of
dimensions in feature vectors with HSV. With a smaller dimension of iterations, HSV is
chosen as the default space color in most applications (Grasso and Recce, 1996).

Figure 10. MSE 50% (left) and 100% (right) validation tests for RGB.

Bayes Theorem introduces a modified mathematical equation for the Probability Density
Function (PDF), which estimates the training set in a conditional statistics. Equation (8) de‐
notes the solution for p(Ci|y) relating the PDF to conditional class i (classes in natural scene),
and y is a n-dimensional feature vector. Naive Bayes implies independence for vector fea‐
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tures, what means that each class assumes the conditional parameter for the PDF, following
Equation (9) (Morimoto et al, 2000).
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In Fig. 11, for the location of fruits in the RGB case, the discrimination of the classes fruit,
sky and leaves, twigs and branches, attends constant amounts proportional to the increasing
of the training sets. This amount, for HSV case, is reduced for the fruit class, as the disper‐
sion of pixels is greater in this color space. In Fig. 12, in the RGB case, the best results were
obtained using Bayes classifier, having smaller ratio estimation in relation to the number of
components analyzed. In this color space, the estimation in the recognition of objects related
to the fruits is given by the PDF of each dimension, correcting the current values by the
hope of each area not matched to the respective class.

Also in Fig. 12, the recognition of the fruit to the HSV case presents balance in the results of
the two classifiers, but with a compensation of the success rate, for lower margins of the esti‐
mation ratio to the Bayes classifier. This allows the correction of the next results by priori
estimation approximating, in the PDF of each dimension.

It can be seen that, the ratio of the estimation must be lesser for the increasing of the dimen‐
sions number and its subsequent classification, in all cases.

Figure 11. Quantity of dimensions of each set (oranges RGB - left, oranges HSV - right).

Advances in Image Segmentation114



Figure 12. Mixture parameters for estimated set (oranges RGB - left, oranges HSV - right).

6. Objects quantification (post-processing)

The classes maps are processed, as the representation by the area filling (floodfill) brings only
solid regions which are quantified. Initially, a conversion is performed on gray level image
in order to threshold regions that are outlined. Then, to determine the labels of the elements
connected, it is necessary to exclude objects which are greater than 200 to 300 pixels, de‐
pending on the focal length. Thus, it is necessary to identify each element smaller than this
threshold, and calculate the properties of these objects, such as area, centroid, and the boun‐
dary region. As a result, the objects that present areas near the circular geometry will be la‐
belled and quantified as fruits.

To determine the metrics and the definition of objects of orange crop, the graph-based seg‐
mentation (Gonzalez and Woods, 2007) was applied. This technique provides the adjacency
relation between the binary values of the pixels, and their respective positions, highlighting
the local geometric properties of the image.

In first case, areas corresponding to small regions, as fruits partially hidden (oranges) with
equivalent texture and color properties to leaves are excluded. Then, estimated elements are
fully grouped, when overlap the representative segments, which denote an orange fruit.
Lastly, the grouping is applied for regions which detect two or more representative seg‐
ments, denoting another orange fruit.

As the best classification results, related to second approach were through Bayes in HSV col‐
or space, only the maps of class from these classifiers will be presented to localization and
quantification of objects, compared to RGB case.

Then, for the RGB and HSV cases are presented, through Figures 13 to 21, the images in
their respective maps of class, the pre-processing for thresholding with areas smaller than
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100 and greater than 300, the geometric approximation metrics for the detection of circular
objects, the boundary regions with the centroid of each object, and finally the label associat‐
ed to the fruit.

Figure 13. Maps of RGB (left) and HSV (right) classes - scene 1.

Figure 14. Metric near circular geometry threshold 1.0 for RGB (left) and HSV (right) - scene 1.

Figure 15. Representation of area and centroid for fruit association in two cases - scene 1.
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Figure 16. Maps of RGB (left) and HSV (right) classes - scene 2.

Figure 17. Metric near circular geometry threshold 1.0 for RGB (left) and HSV (right) - scene 2.

Figure 18. Representation of area and centroid for fruit association in two cases - scene 2.
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Figure 19. Maps of RGB (left) and HSV (right) classes - scene 3.

Figure 20. Metric near circular geometry threshold 1.0 for RGB (left) and HSV (right) - scene 3.

Figure 21. Representation of area and centroid for fruit association in two cases - scene 3.

7. Conclusions

This chapter presented merging techniques for segmentation and statistical classification of
agricultural orange crops scenes, running multiple segmentation tests with JSEG algorithm
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possible. As the data provided evince, this generated algorithms fulfills the expectations as
far as segmenting is concerned, so that it sorts the appropriate classes (fruits; leaves and
branches; sky). As a result, a modular strategy with Bayes statistical theorem can be an op‐
tion for the classification of segments applied with cognitive approach.
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